Wirelessly powered large-area electronics for the Internet of Things
Powering the increasing number of sensor nodes used in the Internet of Things creates a technological challenge. The economic and sustainability issues of battery-powered devices mean that wirelessly powered operation—combined with environmentally friendly circuit technologies—will be needed. Large-...
Gespeichert in:
Veröffentlicht in: | Nature electronics 2023-01, Vol.6 (1), p.10-17 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Powering the increasing number of sensor nodes used in the Internet of Things creates a technological challenge. The economic and sustainability issues of battery-powered devices mean that wirelessly powered operation—combined with environmentally friendly circuit technologies—will be needed. Large-area electronics—which can be based on organic semiconductors, amorphous metal oxide semiconductors, semiconducting carbon nanotubes and two-dimensional semiconductors—could provide a solution. Here we examine the potential of large-area electronics technology in the development of sustainable, wirelessly powered Internet of Things sensor nodes. We provide a system-level analysis of wirelessly powered sensor nodes, identifying the constraints faced by such devices and highlighting promising architectures and design approaches. We then explore the use of large-area electronics technology in wirelessly powered Internet of Things sensor nodes, with a focus on low-power transistor circuits for digital processing and signal amplification, as well as high-speed diodes and printed antennas for data communication and radiofrequency energy harvesting.
This Perspective explores the potential of large-area electronics in wirelessly powered sensor nodes for the Internet of Things, considering low-power circuits for digital processing and signal amplification, as well as diodes and printed antennas for data communication and radiofrequency energy harvesting. |
---|---|
ISSN: | 2520-1131 2520-1131 |
DOI: | 10.1038/s41928-022-00898-5 |