Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique
Indium tin oxide (ITO) is a transparent conductor used in applications such as touch screens, smart windows and displays. A key limitation of ITO is its brittle nature, which prohibits its use in flexible electronics. The commercial deposition of high-quality ITO also currently relies on a costly va...
Gespeichert in:
Veröffentlicht in: | Nature electronics 2020-01, Vol.3 (1), p.51-58 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Indium tin oxide (ITO) is a transparent conductor used in applications such as touch screens, smart windows and displays. A key limitation of ITO is its brittle nature, which prohibits its use in flexible electronics. The commercial deposition of high-quality ITO also currently relies on a costly vacuum manufacturing approach. Here we report the centimetre-scale synthesis of flexible two-dimensional ITO using a low-temperature liquid metal printing technique. The approach can directly deposit monolayer or bilayer ITO onto desired substrates, with the resulting bilayer samples offering a transparency above 99.3% and a sheet resistance as low as 5.4 kΩ □
−1
. We also show that the bilayer ITO features a stratified structure with a pronounced van der Waals spacing. To illustrate the capabilities of the technique, we develop a capacitive touch screen using centimetre-sized monolayer ITO sheets.
A liquid metal printing technique can be used to create monolayer and bilayer indium tin oxide, with the bilayer samples offering a transparency above 99.3% and a sheet resistance as low as 5.4 kΩ □
−1
. |
---|---|
ISSN: | 2520-1131 2520-1131 |
DOI: | 10.1038/s41928-019-0353-8 |