Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ at finite temperatures

Epitaxially grown $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 (STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies ( $${\mathrm{V}_{{\mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-06, Vol.11 (1), Article 11499
Hauptverfasser: Zhou, Zizhen, Chu, Dewei, Cazorla, Claudio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epitaxially grown $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 (STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies ( $${\mathrm{V}_{{\mathrm{O}}}$$ V O ), on the other hand, are key defects to understand and tailor many of the unique functionalities realized in oxide perovskite thin films. Here, we present a comprehensive and technically sound ab initio description of $${\mathrm{V}_{{\mathrm{O}}}$$ V O in epitaxially strained (001) STO thin films. The novelty of our first-principles study lies in the incorporation of lattice thermal excitations on the formation energy and diffusion properties of $${\mathrm{V}_{{\mathrm{O}}}$$ V O over wide epitaxial strain conditions ( $$-4 \le \eta \le +4$$ - 4 ≤ η ≤ + 4 %). We found that thermal lattice excitations are necessary to obtain a satisfactory agreement between first-principles calculations and the available experimental data for the formation energy of $${\mathrm{V}_{{\mathrm{O}}}$$ V O . Furthermore, it is shown that thermal lattice excitations noticeably affect the energy barriers for oxygen ion diffusion, which strongly depend on $$\eta $$ η and are significantly reduced (increased) under tensile (compressive) strain. The present work demonstrates that for a realistic theoretical description of oxygen vacancies in STO thin films is necessary to consider lattice thermal excitations, thus going beyond standard zero-temperature ab initio approaches.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-91018-4