Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ at finite temperatures
Epitaxially grown $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 (STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies ( $${\mathrm{V}_{{\mat...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-06, Vol.11 (1), Article 11499 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epitaxially grown
$$\hbox {SrTiO}_{{3}}$$
SrTiO
3
(STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies (
$${\mathrm{V}_{{\mathrm{O}}}$$
V
O
), on the other hand, are key defects to understand and tailor many of the unique functionalities realized in oxide perovskite thin films. Here, we present a comprehensive and technically sound
ab initio
description of
$${\mathrm{V}_{{\mathrm{O}}}$$
V
O
in epitaxially strained (001) STO thin films. The novelty of our first-principles study lies in the incorporation of lattice thermal excitations on the formation energy and diffusion properties of
$${\mathrm{V}_{{\mathrm{O}}}$$
V
O
over wide epitaxial strain conditions (
$$-4 \le \eta \le +4$$
-
4
≤
η
≤
+
4
%). We found that thermal lattice excitations are necessary to obtain a satisfactory agreement between first-principles calculations and the available experimental data for the formation energy of
$${\mathrm{V}_{{\mathrm{O}}}$$
V
O
. Furthermore, it is shown that thermal lattice excitations noticeably affect the energy barriers for oxygen ion diffusion, which strongly depend on
$$\eta $$
η
and are significantly reduced (increased) under tensile (compressive) strain. The present work demonstrates that for a realistic theoretical description of oxygen vacancies in STO thin films is necessary to consider lattice thermal excitations, thus going beyond standard zero-temperature
ab initio
approaches. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-91018-4 |