A general method to optimize and functionalize red-shifted rhodamine dyes
Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore owing to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performanc...
Gespeichert in:
Veröffentlicht in: | Nature methods 2020-08, Vol.17 (8), p.815-821 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore owing to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a framework for rationalizing rhodamine behavior in biological environments and a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups. This strategy yields red-shifted ‘Janelia Fluor’ (JF) dyes useful for biological imaging experiments in cells and in vivo.
A general tuning strategy is introduced for improving the utility of rhodamines for biological imaging applications. The strategy yielded bright, versatile and bioavailable far-red and near-infrared ‘Janelia Fluor’ dyes. |
---|---|
ISSN: | 1548-7091 1548-7105 |
DOI: | 10.1038/s41592-020-0909-6 |