Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires
Hybrid quantum materials allow for quantum phases that otherwise do not exist in nature 1 , 2 . For example, a one-dimensional topological superconductor with Majorana states bound to its ends can be realized by coupling a semiconductor nanowire to a superconductor in the presence of a strong magnet...
Gespeichert in:
Veröffentlicht in: | Nature physics 2021-01, Vol.17 (1), p.43-47 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hybrid quantum materials allow for quantum phases that otherwise do not exist in nature
1
,
2
. For example, a one-dimensional topological superconductor with Majorana states bound to its ends can be realized by coupling a semiconductor nanowire to a superconductor in the presence of a strong magnetic field
3
–
5
. However, the applied magnetic fields are detrimental to superconductivity, and constrain device layout, components, materials, fabrication and operation
6
. Early on, an alternative source of Zeeman coupling that circumvents these constraints—using a ferromagnetic insulator instead of an applied field—was proposed theoretically
7
. Here, we report transport measurements in hybrid nanowires using epitaxial layers of superconducting Al and the ferromagnetic insulator EuS on semiconducting InAs nanowires. We infer a remanent effective Zeeman field exceeding 1 T and observe stable zero-bias conductance peaks in bias spectroscopy at zero applied field, consistent with topological superconductivity. Hysteretic spectral features in applied magnetic field support this picture.
By incorporating a ferromagnetic layer in their superconductor–semiconductor nanowire hybrid device, Vaitiekėnas et al. show that zero-bias peaks—potential Majorana bound states—can be induced without an external magnetic field. |
---|---|
ISSN: | 1745-2473 1745-2481 |
DOI: | 10.1038/s41567-020-1017-3 |