A highly reflective biogenic photonic material from core–shell birefringent nanoparticles
Spectacular natural optical phenomena are produced by highly reflective assemblies of organic crystals. Here we show how the tapetum reflector in a shrimp eye is constructed from arrays of spherical isoxanthopterin nanoparticles and relate the particle properties to their optical function. The nanop...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2020-02, Vol.15 (2), p.138-144 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spectacular natural optical phenomena are produced by highly reflective assemblies of organic crystals. Here we show how the tapetum reflector in a shrimp eye is constructed from arrays of spherical isoxanthopterin nanoparticles and relate the particle properties to their optical function. The nanoparticles are composed of single-crystal isoxanthopterin nanoplates arranged in concentric lamellae around a hollow core. The spherulitic birefringence of the nanoparticles, which originates from the radial alignment of the plates, results in a significant enhancement of the back-scattering. This enables the organism to maximize the reflectivity of the ultrathin tapetum, which functions to increase the eye’s sensitivity and preserve visual acuity. The particle size, core/shell ratio and packing are also controlled to optimize the intensity and spectral properties of the tapetum back-scattering. This system offers inspiration for the design of photonic crystals constructed from spherically symmetric birefringent particles for use in ultrathin reflectors and as non-iridescent pigments.
The birefringence of isoxanthopterin crystalline spherulites enhances the reflectivity of a biological photonic crystal. |
---|---|
ISSN: | 1748-3387 1748-3395 |
DOI: | 10.1038/s41565-019-0609-5 |