The role of oxygen-permeable ionomer for polymer electrolyte fuel cells

In recent years, considerable research and development efforts are devoted to improving the performance of polymer electrolyte fuel cells. However, the power density and catalytic activities of these energy conversion devices are still far from being satisfactory for large-scale operation. Here we r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-08, Vol.12 (1), p.4956-9, Article 4956
Hauptverfasser: Jinnouchi, Ryosuke, Kudo, Kenji, Kodama, Kensaku, Kitano, Naoki, Suzuki, Takahisa, Minami, Saori, Shinozaki, Kazuma, Hasegawa, Naoki, Shinohara, Akihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, considerable research and development efforts are devoted to improving the performance of polymer electrolyte fuel cells. However, the power density and catalytic activities of these energy conversion devices are still far from being satisfactory for large-scale operation. Here we report performance enhancement via incorporation, in the cathode catalyst layers, of a ring-structured backbone matrix into ionomers. Electrochemical characterizations of single cells and microelectrodes reveal that high power density is obtained using an ionomer with high oxygen solubility. The high solubility allows oxygen to permeate the ionomer/catalyst interface and react with protons and electrons on the catalyst surfaces. Furthermore, characterizations of single cells and single-crystal surfaces reveal that the oxygen reduction reaction activity is enhanced owing to the mitigation of catalyst poisoning by sulfonate anion groups. Molecular dynamics simulations indicate that both the high permeation and poisoning mitigation are due to the suppression of densely layered folding of polymer backbones near the catalyst surfaces by the incorporated ring-structured matrix. These experimental and theoretical observations demonstrate that ionomer’s tailored molecular design promotes local oxygen transport and catalytic reactions. Polymer electrolyte fuel cells are promising but suffer from low performance. Here, the authors use a combination of electrochemical measurements and molecular dynamics simulations to reveal the role of the highly oxygen permeable ionomer in polymer electrolyte fuel cells that enhances the oxygen transport and catalytic activity.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25301-3