Retinal adaptation to spatial correlations

The classical center-surround retinal ganglion cell receptive field is thought to remove the strong spatial correlations in natural scenes, enabling efficient use of limited bandwidth. While early studies with drifting gratings reported robust surrounds (Enroth-Cugell and Robson, 1966), recent measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature precedings 2011-09
Hauptverfasser: Simmons, Kristina, Prentice, Jason, Homann, Jan, Tkacik, Gasper, Nelson, Philip, Balasubramanian, Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical center-surround retinal ganglion cell receptive field is thought to remove the strong spatial correlations in natural scenes, enabling efficient use of limited bandwidth. While early studies with drifting gratings reported robust surrounds (Enroth-Cugell and Robson, 1966), recent measurements with white noise reveal weak surrounds (Chichilnisky and Kalmar, 2002). This might be evidence for dynamical weakening of the retinal surround in response to decreased spatial correlations, which would be predicted by efficient coding theory. Such adaptation is reported in LGN (Lesica et al., 2007), but whether the retina also adapts to correlations is unknown.We tested for adaptation by recording simultaneously from ~40 ganglion cells on a multi-electrode array while presenting white and exponentially correlated checkerboards and strips. Measuring from ~200 cells responding to 90 minutes each of white and correlated stimuli, we were able to extract precise spatiotemporal receptive fields (STRFs). We found that a difference-of-Gaussians was not a good fit and the surround was generally displaced from the center. Thus, to assess surround strength we found the center and surround regions and the total weight on the pixels in each region. The relative surround strength was then defined as the ratio of surround weight to center weight. Surprisingly, we found that the majority of recorded cells have a stronger surround under white noise than under correlated noise (p
ISSN:1756-0357
1756-0357
DOI:10.1038/npre.2011.6344.1