Functional differentiation within the monkey cortex as revealed by near-infrared spectroscopy

The role of prefrontal cortex in working memory (WM) is well established. However, questions remain regarding the topography and “domain-specific differentiation” of different types of information processing in the cortex. While it has been theorized that dorsolateral (DPFC) and ventrolateral (VPFC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature precedings 2008-03
Hauptverfasser: Ardestani, Allen, Darvas, Felix, Steinbrink, Jens, Toga, Arthur, Fuster, Joaquin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of prefrontal cortex in working memory (WM) is well established. However, questions remain regarding the topography and “domain-specific differentiation” of different types of information processing in the cortex. While it has been theorized that dorsolateral (DPFC) and ventrolateral (VPFC) prefrontal cortex preferentially process spatial and object WM, respectively, both electrophysiological evidence in the monkey and neuroimaging in the human have largely failed to demonstrate such regional differentiation. In this study we use near-infrared spectroscopy (NIRS) to detect functional changes, across relatively large cortical cell populations, simultaneously from prefrontal and posterior parietal cortices. Imaging data were recorded from a Rhesus macaque performing two types of WM tasks: a spatial task in which the animal had to retain the spatial position of a visual stimulus, and a non-spatial task where he had to retain its color (red or green) during a 20s delay. During performance of the spatial WM task, cerebral activation trends were found in which DPFC exhibited stronger activation than did the VPFC, and posterior parietal cortex maintained higher delay activation than did frontal regions. These differences were less pronounced during performance of the non-spatial task. Additionally, incorrect trials generally elicited lower activations during the delay period than did trials ending with a correct response. Furthermore, NIRS data collected during the performance of a haptic WM task also appear to exhibit inter-regional differences in delay activation. The data thus suggest the presence of preferential cognitive processing between and within posterior and frontal cortical regions.
ISSN:1756-0357
1756-0357
DOI:10.1038/npre.2008.1673.1