Light-induced giant dipoles in simple model compounds for photosynthesis
The primary steps in photosynthesis involve very rapid (sub-nanosecond) electron transfer between molecular entities that are rigidly embedded within a lipid membrane and separated from each other by well-defined distances on the order of 10 Å. In an attempt to simulate such systems we have studied...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1986-04, Vol.320 (6063), p.615-616 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The primary steps in photosynthesis involve very rapid (sub-nanosecond) electron transfer between molecular entities that are rigidly embedded within a lipid membrane and separated from each other by well-defined distances on the order of 10 Å. In an attempt to simulate such systems we have studied photon-induced electron transfer within specially synthesized molecular assemblies in which a donor moiety is separated from an electron acceptor by a rigid, saturated hydrocarbon framework of variable length, from 5 to 13 Å. We find charge separation to occur on a sub-nanosecond timescale with close to unit quantum efficiency in all cases. The lifetimes of the resulting charge-transfer states, with dipole moments approaching 70 debye units, can extend to several hundred nanoseconds. Non-conjugated hydrocarbon bridges may be important in determining the rate and direction of electron transfer in photo-excited natural or artificial molecular systems. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/320615a0 |