Low frictional strength of upper crustal faults: A model

Low frictional strength of faults is estimated based on existing models for earthquake recurrence, which account for compaction and hydrothermal lithification of fault rocks, as well as for the buildup of high fluid pressures in faults during interseismic periods. In areas of elevated heat flow and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Solid Earth 1997-11, Vol.102 (B11), p.24619-24626
1. Verfasser: Streit, Jürgen E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low frictional strength of faults is estimated based on existing models for earthquake recurrence, which account for compaction and hydrothermal lithification of fault rocks, as well as for the buildup of high fluid pressures in faults during interseismic periods. In areas of elevated heat flow and for a geothermal gradient of 30°C/km, fault compaction, lithification, and changes in fluid pressure gradient are inferred to occur at shallow crustal depth (3 to 7 km). Calculated shearing resistance of faults at seismogenic depths is compatible with shear stress drops ascribed to moderate and large earthquakes. The high frequency of microearthquakes, as well as the occurrence of some larger mainshock hypocenters at shallow crustal depth along several strands of the San Andreas Fault system are consistent with a predicted minimum of crustal strength at the top of a high fluid pressure regime. On the basis of field evidence from many exhumed faults for lithification of fault gouge and for faulting at near‐lithostatic fluid pressures, a modified crustal strength profile is suggested to represent the strength of many active faults which involve hydrothermal fluid flow.
ISSN:0148-0227
2156-2202
DOI:10.1029/97JB01509