Seasonally Resolved Holocene Sea Ice Variability Inferred From South Pole Ice Core Chemistry

Variability in sea ice is a critical climate feedback, yet the seasonal behavior of Southern Hemisphere sea ice and climate across multiple timescales remains unclear. Here, we develop a seasonally resolved Holocene sea salt record using major ion measurements of the South Pole Ice Core (SPC14). We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2021-04, Vol.48 (8), p.n/a
Hauptverfasser: Winski, Dominic A., Osterberg, Erich C., Kreutz, Karl J., Ferris, David G., Cole‐Dai, Jihong, Thundercloud, Zayta, Huang, Jiayue, Alexander, Becky, Jaeglé, Lyatt, Kennedy, Joshua A., Larrick, Carleigh, Kahle, Emma C., Steig, Eric J., Jones, Tyler R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Variability in sea ice is a critical climate feedback, yet the seasonal behavior of Southern Hemisphere sea ice and climate across multiple timescales remains unclear. Here, we develop a seasonally resolved Holocene sea salt record using major ion measurements of the South Pole Ice Core (SPC14). We combine the SPC14 data with the GEOS‐Chem chemical transport model to demonstrate that the primary sea salt source switches seasonally from open water (summer) to sea ice (winter), with wintertime variations disproportionately responsible for the centennial to millennial scale structure in the record. We interpret increasing SPC14 and circum‐Antarctic Holocene sea salt concentrations, particularly between 8 and 10 ka, as reflecting a period of winter sea ice expansion. Between 5 and 6 ka, an anomalous drop in South Atlantic sector sea salt indicates a temporary sea ice reduction that may be coupled with Northern Hemisphere cooling and associated ocean circulation changes. Plain Language Summary Sea ice variability has a dramatic effect on regional and global climate. Because sea ice extent has such a large summer to winter difference, seasonally specific records of past sea ice conditions are necessary to properly interpret sea ice/climate relationships. Here, we present a sea salt record from the South Pole Ice Core, which represents Southern Hemisphere sea ice changes during the last 11,400 years. We use an atmospheric chemistry model to show that wintertime sea salt in the South Pole Ice Core comes mostly from salty snow originating from sea ice. Wintertime sea ice variations are responsible for most of the long‐term variability in the South Pole sea salt record. Ice core data across Antarctica show increasing sea salt concentrations since 11,400 years ago, representing cooling and sea ice expansion, particularly between 8,000 and 10,000 years ago. Between 5,000 and 6,000 years ago, a drop in sea salt indicates an abrupt reduction in sea ice cover in the South Atlantic. Interestingly, paleoclimate data suggest that sea ice was more extensive in the North Atlantic at this time, indicating a linked and opposing sea ice signal in the North and South Atlantic most likely due to changing ocean circulation. Key Points Millennial‐scale Holocene variations in sea salt sodium at the South Pole primarily originate from changes in winter sea ice extent Antarctic Holocene sea salt values increased, especially from 8,000 to 10,000 years ago, reflecting a zonally symmetric
ISSN:0094-8276
1944-8007
DOI:10.1029/2020GL091602