Temporal variation of aerosol properties at a rural continental site and study of aerosol evolution through growth law analysis

Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) on board the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May 2003. During the same period a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2006-09, Vol.111 (D18), p.n/a
Hauptverfasser: Wang, Jian, Collins, Don, Covert, David, Elleman, Robert, Ferrare, Richard A., Gasparini, Roberto, Jonsson, Haflidi, Ogren, John, Sheridan, Patrick, Tsay, Si-Chee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) on board the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 m. Analyses of size‐dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.
ISSN:0148-0227
2156-2202
DOI:10.1029/2005JD006704