Atmospheric mercury emissions from substrates and fumaroles associated with three hydrothermal systems in the western United States
This paper quantifies atmospheric mercury (Hg) emissions from substrates and fumaroles associated with three hydrothermal systems: Lassen Volcanic Center, California (LVC); Yellowstone Caldera, Wyoming (YC); and Dixie Valley, Nevada (DV). Substrate Hg fluxes were measured using field chamber methods...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Atmospheres 2006-09, Vol.111 (D17), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper quantifies atmospheric mercury (Hg) emissions from substrates and fumaroles associated with three hydrothermal systems: Lassen Volcanic Center, California (LVC); Yellowstone Caldera, Wyoming (YC); and Dixie Valley, Nevada (DV). Substrate Hg fluxes were measured using field chamber methods at thermal and nonthermal sites. The highest Hg fluxes (up to 541 ng m−2 h−1) were measured at thermal active areas. Fluxes from altered and unaltered nonthermal sites were 98%). At YC, substrate Hg emissions were dominated (50 to 90%) by acidically altered thermal areas. Substrate emissions at DV were low and primarily from nonthermal areas (66% to 75%). Fumarole emissions at LVC (91–146 kg yr−1) and YC (0.18–1.6 kg yr−1 for Mud Volcano) were estimated by applying Hg:H2O and Hg:CO2 ratios in hydrothermal gas samples to H2O and CO2 emissions. Applying total area‐average emissions from substrates and thermal features at LVC, YC, and DV to similar systems across the conterminous United States, yearly atmospheric Hg emissions from active hydrothermal systems are projected to be 1.3–2.1 Mg. |
---|---|
ISSN: | 0148-0227 2156-2202 |
DOI: | 10.1029/2005JD006563 |