Environmental Life Cycle Perspective on Rare Earth Oxide Production
Rare earth elements (REEs) are a collection of 17 chemical elements that are critical to the functionality of a host of modern commercial industries including emerging clean energy technologies, electronics, medical devices, and national defense applications. Despite their key importance in multiple...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2015-02, Vol.3 (2), p.237-244 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rare earth elements (REEs) are a collection of 17 chemical elements that are critical to the functionality of a host of modern commercial industries including emerging clean energy technologies, electronics, medical devices, and national defense applications. Despite their key importance in multiple industries, to-date there has been little emphasis on environmental systems analysis of REE production. Rapid growth in these industrial sectors could result in heightened global demand for REE. As such, assessing the broader ramifications of REE production on human health and the environment is crucial for guiding the sustainable development of these industries. In this study, life cycle assessment (LCA) is performed to evaluate the environmental impacts and resource intensity of producing rare earth oxides (REO) from the Bayan Obo mine located in Inner Mongolia, China. Analysis indicates that the mining, as well as extraction and roasting phase(s), had the greatest contribution to overall life cycle environmental impacts. Additionally, the results reveal that the production of heavy REO consumes over 20 times more primary energy as compared to steel (per unit mass). The high primary energy consumption and life cycle environmental impacts of REO production highlight the critical need for development of REE recycling operations and infrastructure. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/sc500573b |