Sustainable Integration of Algal Biodiesel Production with Steam Electric Power Plants for Greenhouse Gas Mitigation
Significant reductions in anthropogenic greenhouse gas (GHG) emissions, particularly of fossil carbon dioxide (CO2), are necessary worldwide in order to prevent adverse impacts of global climate change on the socio-economic sectors, ecological systems, and human health. In this context, this study a...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2014-06, Vol.2 (6), p.1388-1403 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Significant reductions in anthropogenic greenhouse gas (GHG) emissions, particularly of fossil carbon dioxide (CO2), are necessary worldwide in order to prevent adverse impacts of global climate change on the socio-economic sectors, ecological systems, and human health. In this context, this study aims to investigate the economic and environmental aspects of sustainability associated with the integration of algal biodiesel production with a steam electric power plant for microalgae biofixation of CO2 in flue gases and then algal biomass conversion to biodiesel. This integrated energy system is a multipurpose process that provides the CO2 required by the microalgae cultures as well as electricity, biodiesel produced from the algal biomass, and lipid-depleted biomass which is in turn used as an auxiliary fuel in the power plant. A multi-objective optimization strategy based on genetic algorithms is proposed to yield a set of optimal solutions providing the best compromise between the profit and the environmental impact of regenerative Rankine power generation plants coupled with algae-to-biodiesel production facilities. The power plant operates continuously, but CO2 is fed to open pond raceways only during the daytime (12 h a day) for algae growth. The rigorous IAPWS-IF97 formulation is used to calculate the thermodynamic properties of water and steam in the steam power cycle. The environmental impact is measured by the Eco-indicator 99 methodology that follows LCA principles. The optimization problem includes the selection of multiple primary energy sources for the power plant boiler, such as fossil fuels (coal, oil, and natural gas), biofuels, and biomass (switchgrass, softwood, and hardwood) in order to achieve significant reductions of CO2 emissions. The optimal trade-off designs are obtained by implementing the ε-constraint method. The optimization method has been applied to a case study in México. The Pareto optimal solutions indicate that the current price for biodiesel of $3.91/gal on average would make the integrated energy system under consideration profitable. In addition, the system could achieve significant environmental improvements due to life-cycle GHG reductions that result not only from biofixation of CO2 from combustion flue gases by microalgae and then algal biomass conversion and use as renewable fuels (i.e., biodiesel and lipid-depleted biomass) that substitute for fossil fuels, but also by significantly reducing the fossil fuel requir |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/sc400436a |