Ring-Opening Polymerization of rac-Lactide by Bis(phenolate)amine-Supported Samarium Borohydride Complexes: An Experimental and DFT Study

The synthesis and ring-opening polymerization (ROP) capability of bis(phenolate)amine-supported samarium borohydride and amide complexes are reported, together with a DFT study. Reaction of Na2O2NL (L = OMe, NMe2, py, or Pr) with Sm(BH4)3(THF)3 gave the borohydride complexes Sm(O2NL)(BH4)(THF) (L =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organometallics 2010-08, Vol.29 (16), p.3602-3621
Hauptverfasser: Dyer, Hellen E, Huijser, Saskia, Susperregui, Nicolas, Bonnet, Fanny, Schwarz, Andrew D, Duchateau, Robbert, Maron, Laurent, Mountford, Philip
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The synthesis and ring-opening polymerization (ROP) capability of bis(phenolate)amine-supported samarium borohydride and amide complexes are reported, together with a DFT study. Reaction of Na2O2NL (L = OMe, NMe2, py, or Pr) with Sm(BH4)3(THF)3 gave the borohydride complexes Sm(O2NL)(BH4)(THF) (L = OMe (2), NMe2 (3), or py (4)) or Sm(O2NPr)(BH4)(THF)2 (5). Compounds 4 and 5 lost THF in vacuo, forming phenolate O-bridged dimers 1 and 6, respectively. Reaction of H2O2NL with Sm{N(SiHMe2)2}3(THF)2 formed monomeric Sm(O2NL){N(SiHMe2)2}(THF) (L = OMe (7), NMe2 (8), or py (9)) with tetradentate O2NL ligands, but dimeric Sm2(μ-O2NPr)2(O2NPr)(THF) (10) with tridentate O2NPr. Reaction of Sm{N(SiMe3)2}3 with H2O2NL (L = OMe or NMe2) led to zwitterionic products Sm(O2NL)(HO2NL). The bulkier amide compounds Sm(O2NL){N(SiMe3)2}(OEt2) n (n = 1, L = OMe (12) or py (13); n = 0, L = NMe2 (14)) were prepared by reaction of Sm(O2NL)(BH4)(THF) with KN(SiMe3)2. The X-ray structures of 2, 5, 6, 7, 10, 13, and 14 were determined. The borohydrides 2−5 were very efficient initiators for the ROP of ε-CL, giving linear dihydroxytelechelic poly(ε-CL). Selected amide initiators were also assessed but gave poorer control, as judged by broad PDI (M w/M n) values and significant amounts of cyclic poly(ε-CL)s. Of the borohydrides, only 2−4 were active for the ROP of rac-LA, and activity increased in the order O2NL = O2NOMe ≈ O2Npy < O2NNMe2. The latter ligand also gave the best control of the ROP, as judged by the PDIs and M n values. All gave heterotactically enriched poly(rac-LA) with P r values in the range 0.82−0.84. The ROP of rac-LA with the amides 7, 9, and 12 was faster but much less well controlled. Overall, the borohydride initiators were superior for the ROP of both ε-CL and rac-LA when compared to otherwise identical amide initiators. MALDI-ToF MS analysis of the poly(rac-LA) formed with 3 showed both −CH(Me)CHO and −CH(Me)CH2OH end groups originating from the insertion of the first LA monomer into the Sm−BH4 moiety of 3. In contrast, 2 and 4 formed only α,ω-dihydroxy-terminated polyesters with −CH(Me)CH2OH and −CH(Me)OH end groups. DFT calculations on Eu(O2′NNMe2)(BH4) found two mechanisms for the initial ring-opening step of LA by the borohydride group, giving pathways leading to either aldehyde- or alcohol-terminated poly(lactide)s. Of these two pathways, the one giving α,ω-dihydroxy-terminated polymers was the most favored, in agreement with experiment. (Ligand abbreviatio
ISSN:0276-7333
1520-6041
DOI:10.1021/om100513j