Point Mutations (Q19P and N23K) Increase the Operational Solubility of a 2α-O-Benzoyltransferase that Conveys Various Acyl Groups from CoA to a Taxane Acceptor
Two site-directed mutations within the wild-type 2-O-benzoyltransferase (tbt) cDNA, from Taxus cuspidata plants, yielded an encoded protein containing replacement amino acids at Q19P and N23K that map to a solvent-exposed loop region. The likely significant changes in the biophysical properties invo...
Gespeichert in:
Veröffentlicht in: | Journal of natural products (Washington, D.C.) D.C.), 2010-02, Vol.73 (2), p.151-159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two site-directed mutations within the wild-type 2-O-benzoyltransferase (tbt) cDNA, from Taxus cuspidata plants, yielded an encoded protein containing replacement amino acids at Q19P and N23K that map to a solvent-exposed loop region. The likely significant changes in the biophysical properties invoked by these mutations caused the overexpressed, modified TBT (mTBT) to partition into the soluble enzyme fraction about 5-fold greater than the wild-type enzyme. Sufficient protein could now be acquired to examine the scope of the substrate specificity of mTBT by incubation with 7,13-O,O-diacetyl-2-O-debenzoylbaccatin III that was mixed individually with various substituted benzoyls, alkanoyls, and (E)-butenoyl CoA donors. The mTBT catalyzed the conversion of each 7,13-O,O-diacetyl-2-O-debenzoylbaccatin III to several 7,13-O,O-diacetyl-2-O-acyl-2-O-debenzoylbaccatin III analogues. The relative catalytic efficiency of mTBT with the 7,13-O,O-diacetyl-2-O-debenzoyl surrogate substrate and heterole carbonyl CoA substrates was slightly greater than with the natural aroyl substrate benzoyl CoA, while substituted benzoyl CoA thioesters were less productive. Short-chain hydrocarbon carbonyl and cyclohexanoyl CoA thioesters were also productive, where C4 substrates were transferred by mTBT with ∼10- to 17-fold greater catalytic efficiency compared to the transfer of benzoyl. The described broad specificity of mTBT suggests that a plethora of 2-O-acyl variants of the antimitotic paclitaxel can be assembled through biocatalytic sequences. |
---|---|
ISSN: | 0163-3864 1520-6025 |
DOI: | 10.1021/np900524d |