Nanofabrication of Broad-Band Antireflective Surfaces Using Self-Assembly of Block Copolymers
We present a simple and cost-effective method for the fabrication of antireflective surfaces by self-assembly of block copolymers and subsequent plasma etching. The block copolymers create randomly oriented periodic patterns, which are further transferred into fused silica substrates. The reflection...
Gespeichert in:
Veröffentlicht in: | ACS nano 2011-03, Vol.5 (3), p.1860-1864 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a simple and cost-effective method for the fabrication of antireflective surfaces by self-assembly of block copolymers and subsequent plasma etching. The block copolymers create randomly oriented periodic patterns, which are further transferred into fused silica substrates. The reflection on the patterned fused silica surface is reduced to well below 1% in the ultraviolet, visible, and near-infrared ranges by exploiting subwavelength nanostructures with periodicities down to 48 nm. We show that by choosing the appropriate block copolymers and pattern transfer parameters the optical properties of the antireflective surface can be easily tuned, and the spectral measurements verify a significant reduction of the reflectivity by a factor of 10. The experiments, confirmed with simulations based on rigorous diffraction theory, also show that the tapered shape of the nanostructures gives rise to a graded index surface, resulting in a broad-band antireflective behavior. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn103361d |