Ordering, Graphoepitaxial Orientation, and Conformation of a Polyfluorene Derivative of the “Hairy-Rod” Type on an Oriented Substrate of Polyimide

Spin-coated films of an ethylhexyl derivative of polyfluorene can be converted on a pretreated polyimide substrate into highly oriented films by annealing in the liquid crystalline state. Together with improving orientation segregation of the wormlike molecules with respect to chain lengths and lame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2000-06, Vol.33 (12), p.4490-4495
Hauptverfasser: Lieser, Günter, Oda, Masao, Miteva, Tzenka, Meisel, Andreas, Nothofer, Heinz-Georg, Scherf, Ullrich, Neher, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spin-coated films of an ethylhexyl derivative of polyfluorene can be converted on a pretreated polyimide substrate into highly oriented films by annealing in the liquid crystalline state. Together with improving orientation segregation of the wormlike molecules with respect to chain lengths and lamella formation proceeds. End groups are preferentially assembled in interlamellar regions. This morphological feature is thought to influence all measurements of intrinsic properties of polyfluorene films with similar histories. Electron diffraction patterns of the film are identical with X-ray fiber diagrams of fibers drawn from the melt and annealed in the liquid crystalline state. The experimental data show that the polymer molecules adopt a helical (5/q) conformation, packing in a trigonal unit cell. Molecular modeling based on ab initio MO calculations have been carried out to obtain independent estimates of chain geometry and conformation. These calculations are more in favor of a 5/2 rather than a 5/1 helix, with the argument of the observed packing of the individual PF chains and a plausibly low torsion angle of adjacent fluorene building blocks only for a 5/2 helix.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma9921652