Long-Time Self-Diffusion of Rigid Rods at Low Concentrations:  A Variational Approach

No theoretical predictions exist for the concentration dependence of long-time self-diffusion coefficients of rod-shaped Brownian particles with a finite aspect ratio. The reason for this is that the relevant Smoluchowski equation is extremely complicated and cannot be solved explicitly, even on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 1999-06, Vol.32 (11), p.3809-3816
Hauptverfasser: Dhont, Jan K. G, van Bruggen, Michel P. B, Briels, W. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:No theoretical predictions exist for the concentration dependence of long-time self-diffusion coefficients of rod-shaped Brownian particles with a finite aspect ratio. The reason for this is that the relevant Smoluchowski equation is extremely complicated and cannot be solved explicitly, even on the two-particle level. We present an alternative approach where the Smoluchowski equation is solved in approximation by a variational method. The variational principle is applied to calculate the dependence of the long-time translational self-diffusion coefficient of spherocylinders with hard-core interaction to leading order in concentration, with the neglect of hydrodynamic interactions, up to aspect ratios of 30. The first order in concentration coefficient α is found to depend on the aspect ratio p as α = 2 + 10/32(p − 1) + 1/53(p − 1)2.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma981765i