Organolanthanide-Mediated Silanolytic Chain Transfer Processes. Scope and Mechanism of Single Reactor Catalytic Routes to Silapolyolefins

This paper reports efficient and selective silanolytic (PhSiH3, n-BuSiH3, C6H5CH2SiH3) chain transfer in organolanthanide-catalyzed homogeneous ethylene polymerization and ethylene copolymerization with several α-olefins. The result is a series of silyl-capped polyolefins which have been characteriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 1999-02, Vol.32 (4), p.981-988
Hauptverfasser: Koo, Kwangmo, Fu, Peng-Fei, Marks, Tobin J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports efficient and selective silanolytic (PhSiH3, n-BuSiH3, C6H5CH2SiH3) chain transfer in organolanthanide-catalyzed homogeneous ethylene polymerization and ethylene copolymerization with several α-olefins. The result is a series of silyl-capped polyolefins which have been characterized by 1H/13C NMR and IR spectroscopy as well as by GPC. In [(Me5C5)2LnH]2/[Me2Si(Me4C5)2LnH]2-mediated ethylene homopolymerization and ethylene copolymerization, both primary arylsilanes (PhSiH3) and alkylsilanes (n-BuSiH3, C6H5CH2SiH3) function as efficient chain-transfer agents. In the case of ethylene polymerization mediated by [(Me5C5)2SmH]2, the mechanism of chain transfer is supported by the observation that M n of the capped polyethylenes formed at constant [catalyst], [PhSiH3], [ethylene] is inversely proportional to [PhSiH3]. Using silane-activated Me2Si(Me4C5)2LnCH(SiMe3)2 precatalysts, this chain-transfer process also efficiently produces silyl-endcapped ethylene + 1-hexene copolymers and ethylene + styrene copolymers.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma981462o