Phenylquinoxaline Polymers and Low Molar Mass Glasses as Electron-Transport Materials in Organic Light-Emitting Diodes
We present a new synthetic approach to both phenylquinoxaline polymers and low molar mass glasses. A palladium-catalyzed coupling of arylalkynes and bromobenzenes and subsequent oxidation of the triple bonds lead to the corresponding benziles. Reaction with diaminobenzidine yields poly(phenylquinoxa...
Gespeichert in:
Veröffentlicht in: | Macromolecules 1998-09, Vol.31 (19), p.6434-6443 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new synthetic approach to both phenylquinoxaline polymers and low molar mass glasses. A palladium-catalyzed coupling of arylalkynes and bromobenzenes and subsequent oxidation of the triple bonds lead to the corresponding benziles. Reaction with diaminobenzidine yields poly(phenylquinoxalines) (PPQs), whereas the reaction with 1,2-diaminobenzenes leads to low molar mass bis(phenylquinoxalines) (BPQs) and tris(phenylquinoxalines) (TPQs). Both PPQs and TPQs carry tert-butyl or CF3− substituents and are fully soluble in chlorinated hydrocarbons. The starburst TPQs are able to form stable, low molar mass glasses. Cyclic voltammetry reveals that the TPQs have low-lying lowest unoccupied molecular orbitals levels at about −3.6 eV and are attractive as electron-transport materials in organic light-emitting diodes (LEDs). Two-layer LEDs with poly(phenylenevinylene) were fabricated that show a maximum brightness of 450 cd/m2. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma9806054 |