Derivation of the Universal Scaling Equation of the Hydrodynamic Scaling Model via Renormalization Group Analysis
The Altenberger−Dahler positive-function renormalization group (PFRG) method is shown to yield the universal scaling equation D s = D o exp(−αc ν) of the hydrodynamic scaling model for polymer self-diffusion. Here D o is the bare polymer self-diffusion coefficient at some low concentration, c is the...
Gespeichert in:
Veröffentlicht in: | Macromolecules 1998-04, Vol.31 (7), p.2317-2327 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Altenberger−Dahler positive-function renormalization group (PFRG) method is shown to yield the universal scaling equation D s = D o exp(−αc ν) of the hydrodynamic scaling model for polymer self-diffusion. Here D o is the bare polymer self-diffusion coefficient at some low concentration, c is the (potentially high) polymer concentration, and ν and α are a scaling coefficient and scaling prefactor, respectively. To integrate the Lie equations of motion of the PFRG and obtain the universal scaling equation, the Kirkwood−Risemann model for polymer hydrodynamics is extended analytically to determine leading terms of the chain−chain and (for the first time) chain−chain−chain translation−translation hydrodynamic interaction tensors , , , , and , as well as many of their translational−rotational and rotational−rotational analogues. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma971116r |