Stabilized Polymer Microparticles by Precipitation with a Compressed Fluid Antisolvent. 1. Poly(fluoro acrylates)

Poly(1,1-dihydroperfluorooctyl acrylate) (poly(FOA)) based stabilizers greatly reduce, and in some cases eliminate, flocculation of amorphous poly(methyl methacrylate) (PMMA) and polystyrene (PS) microparticles formed by precipitation into liquid CO2 at 23 °C. The microparticle stabilization mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 1997-01, Vol.30 (1), p.71-77
Hauptverfasser: Mawson, Simon, Johnston, Keith P, Betts, Doug E, McClain, Jim B, DeSimone, Joseph M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(1,1-dihydroperfluorooctyl acrylate) (poly(FOA)) based stabilizers greatly reduce, and in some cases eliminate, flocculation of amorphous poly(methyl methacrylate) (PMMA) and polystyrene (PS) microparticles formed by precipitation into liquid CO2 at 23 °C. The microparticle stabilization mechanism is explained in terms of the stabilizer−CO2 phase behavior, the spray characteristics, and the interfacial activity of the stabilizer. Compared with the homopolymer poly(FOA), the diblock copolymer PS-b-poly(FOA) produces smaller and more spherical primary particles (0.1−0.3 μm) and also prevents flocculation at lower stabilizer concentrations. These differences are due to the greater interfacial activity of PS-b-poly(FOA). Steric stabilization commences in the jet on the order of several tenths of milliseconds and continues for seconds throughout the precipitator. With the use of a coaxial nozzle, precipitation is delayed and the stabilizers become even more effective at preventing flocculation.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma961048t