Confinement of Ionic Liquid by Networked Polymers Based on Multifunctional Epoxy Resins

Networked polymers confining an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMImTFSI), were prepared by curing a mixture of bisphenol A diglycidyl ether (BADGE) and tetrafunctional epoxy resins with tetraethylenepentamine (TEPA) in the presence of ionic liquid. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2008-10, Vol.41 (19), p.6981-6986
Hauptverfasser: Matsumoto, Kozo, Endo, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Networked polymers confining an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMImTFSI), were prepared by curing a mixture of bisphenol A diglycidyl ether (BADGE) and tetrafunctional epoxy resins with tetraethylenepentamine (TEPA) in the presence of ionic liquid. It was found that addition of the tetrafunctional epoxy resins was inevitable for better ionic liquid confinement. The ionic liquid confinement, ionic conductivity, mechanical strength, and morphology of the materials strongly depended on the ionic liquid content. At a low ionic liquid content (40 wt %), it did not confine the ionic liquid showing higher ionic conductivity with a low Young’s modulus. At a high ionic liquid content (>40 wt %), microphase separation between the ionic liquid and the epoxy networked polymer was observed by scanning electron microscopy (SEM). A transition of the microphase separation from discrete sphere to continuous structure was also observed between 40 wt % and 50 wt % ionic liquid contents. This morphology transition caused a drastic change of the material properties around these ionic liquid contents.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma801293j