Extending π‑Conjugation System with Benzene: An Effective Method To Improve the Properties of Benzodithiophene-Based Polymer for Highly Efficient Organic Solar Cells

To obtain a polymer based on benzodithiophene (BDT) owning both a largely extended π-conjugation system and a low-lying highest occupied molecular orbital (HOMO), a polymer (PBDTBzT-DTffBT) containing benzothienyl-substituted BDT is designed and synthesized. Compared with the polymer (PBDTT-DTffBT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2014-11, Vol.47 (22), p.7823-7830
Hauptverfasser: Wang, Jiuxing, Xiao, Manjun, Chen, Weichao, Qiu, Meng, Du, Zhengkun, Zhu, Weiguo, Wen, Shuguang, Wang, Ning, Yang, Renqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To obtain a polymer based on benzodithiophene (BDT) owning both a largely extended π-conjugation system and a low-lying highest occupied molecular orbital (HOMO), a polymer (PBDTBzT-DTffBT) containing benzothienyl-substituted BDT is designed and synthesized. Compared with the polymer (PBDTT-DTffBT) based on thienyl-substituted BDT, PBDTBzT-DTffBT exhibits better thermal stabilities, red-shifted absorption spectra, and stronger intermolecular interactions. The HOMO and lowest unoccupied molecular orbital (LUMO) in PBDTBzT-DTffBT are decreased by 0.11 and 0.13 eV, respectively, which should be attributed to the contribution of the electron-withdrawing group benzene. Polymer solar cells (PSCs) based on PBDTBzT-DTffBT and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) exhibit a maximum power conversion efficiency (PCE) of 7.30% with a large open-circuit voltage of 0.90 V under AM 1.5G illumination (100 mW/cm2). The PCE is 36% higher than that of the PSCs derived from PBDTT-DTffBT. These findings provide a new approach to design high-performance conjugated polymers for efficient solution-processed PSCs.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma501756p