Expanding the Dimensionality of Polymers Populated with Organic Robust Radicals toward Flow Cell Application: Synthesis of TEMPO-Crowded Bottlebrush Polymers Using Anionic Polymerization and ROMP

Poly­(norbornene)-g-poly­(4-methacryloyloxy-2,2,6,6-tetramethylpiperidin-1-oxyl) (PNB-g-PTMA) was prepared by a grafting-through approach based on anionic polymerization of 4-methacryloyloxy-2,2,6,6-tetramethylpiperidin-1-oxyl using a norbornene-substituted diphenylhexyllithium to yield a norbornene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2014-12, Vol.47 (24), p.8611-8617
Hauptverfasser: Sukegawa, Takashi, Masuko, Issei, Oyaizu, Kenichi, Nishide, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly­(norbornene)-g-poly­(4-methacryloyloxy-2,2,6,6-tetramethylpiperidin-1-oxyl) (PNB-g-PTMA) was prepared by a grafting-through approach based on anionic polymerization of 4-methacryloyloxy-2,2,6,6-tetramethylpiperidin-1-oxyl using a norbornene-substituted diphenylhexyllithium to yield a norbornene-functionalized macromonomer (NB-PTMA) and subsequent ring-opening metathesis polymerization of NB-PTMA using a Grubbs third-generation catalyst, which avoided critical side reactions involving the nitroxide radical of TEMPO moiety. The anionic polymerization resulted in high yields (>94%), narrow polydispersity indices (98%) and high radical concentrations (0.95 radicals per monomer unit), by virtue of the functional group tolerance of these reactions. Single molecular dimension of PNB-g-PTMA was measured by dynamic light scattering and by atomic force microscopy (AFM), which precisely reflected the bottlebrush structure to reveal the presence of the TEMPO group crowded at the periphery of the molecule. The lengths of PNB-g-PTMA along the macromolecular side chains and the polynorbornene main chain were both approximately equal to the theoretical lengths estimated by the degree of polymerization for each chain. The number-average diameter of PNB-g-PTMA in THF increased with initial NB-PTMA ratio to the Grubbs catalyst. Photo-cross-linked thin layer electrodes of PNB-g-PTMA demonstrated the reversible redox reaction at 0.80 V vs Ag/AgCl corresponding to the TEMPO/TEMPO+ couple and quantitative charging/discharging processes even at 120 C rate (i.e., full charging in 30 s). As a novel application of redox-active polymers, PNB-g-PTMA exhibited 95% efficiency of the theoretical charge capacity in a flow cell system, based on the unique properties of bottlebrush polymers such as the defined molecular dimension and relatively low solution viscosity in comparison with corresponding linear polymers.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma501632t