Novel Diacetylinic Aryloxysilane Polymers: A New Thermally Cross-Linkable High Temperature Polymer System
A new diacetylinic polymer was prepared through polycondensation of 4,4′-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This aromatically substituted siloxane polymer contained thermally cross-linkable diacetylene links in the mainchain. FTIR, Raman, and 13C NMR analysis confirmed the d...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2013-06, Vol.46 (11), p.4370-4377 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new diacetylinic polymer was prepared through polycondensation of 4,4′-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This aromatically substituted siloxane polymer contained thermally cross-linkable diacetylene links in the mainchain. FTIR, Raman, and 13C NMR analysis confirmed the diethynyl group was present in the polymer. DSC analysis showed the polymer had a T g of 130 °C, and a strong exothermic cure peak at 260 °C. Parallel plate rheological testing through monitoring of changes in viscosity confirmed the polymer cross-linked during heating. After curing above 260 °C, the polymer vitrified, with no detectable T g observed on subsequent reheating. The activation energy of thermally initiated curing of the diacetylene groups was estimated to be 120 ± 17 kJ/mol from DSC data using the Ozawa Flynn Wall method. TGA analysis in nitrogen starting from uncured polymer showed a 5% weight loss temperature of 541 °C and a pyrolysis yield of 82% at 800 °C. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma400250b |