Thermoresponsive Poly(N‑C3 glycine)s

Ring-opening polymerization of N-substituted glycine N-carboxyanhydrides (NCAs) was applied to prepare a series of well-defined poly(N-C3 glycine)s (C3 = n-propyl, allyl, propargyl, and isopropyl), polypeptoids, with molecular weights in the range of 1.8–6.6 kg mol–1. Poly(N-isopropyl glycine), a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2013-02, Vol.46 (3), p.580-587
Hauptverfasser: Robinson, Joshua W, Secker, Christian, Weidner, Steffen, Schlaad, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 3
container_start_page 580
container_title Macromolecules
container_volume 46
creator Robinson, Joshua W
Secker, Christian
Weidner, Steffen
Schlaad, Helmut
description Ring-opening polymerization of N-substituted glycine N-carboxyanhydrides (NCAs) was applied to prepare a series of well-defined poly(N-C3 glycine)s (C3 = n-propyl, allyl, propargyl, and isopropyl), polypeptoids, with molecular weights in the range of 1.8–6.6 kg mol–1. Poly(N-isopropyl glycine), a previously unreported polypeptoid, could be obtained by bulk polymerization of the corresponding NCA in the melt. The samples were characterized by spectroscopy (NMR and FT-IR), size exclusion chromatography (SEC), and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI–ToF MS). The polymers could be dispersed in water up to 20–40 g L–1; the poly(N-propargyl glycine) was not soluble in water. Turbidity measurements of the three water-soluble polypeptoids illustrated cloud point temperatures dependent on structural and electronic properties of the side chain. The cloud point temperatures were found to increase in the order C3 = n-propyl (15–25 °C) < allyl (27–54 °C) < isopropyl (47–58 °C). Long-term annealing of the aqueous solution of poly(N-{n-propyl} glycine) and poly(N-allyl glycine) above the cloud point temperature resulted in the formation of crystalline microparticles with melting points of 188–198 and 157–165 °C (differential scanning calorimetry, DSC), respectively, and rose bud type morphology (scanning electron microscopy, SEM).
doi_str_mv 10.1021/ma302412v
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma302412v</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d240428320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a326t-63013df55c5c10ba15bc8fc4d65591c61c7fd50c4c44ed2aa103756adb687f393</originalsourceid><addsrcrecordid>eNptj8tKw0AYhQdRMFYXvkE3il1E_39uSZZS6gWKuqjrMPkzoym5MaOF7HwFX9EnMVKpG1cHDt858DF2inCJwPGqMQK4RL7ZYxEqDrFKhdpnEYxtnPEsOWRHIawBEJUUETtfvVrfdN6GvmtDtbHTp64eLh6-Pj7nYvpSD1S1dhaO2YEzdbAnvzlhzzeL1fwuXj7e3s-vl7ERXL_FWgCK0ilFihAKg6qg1JEstVIZkkZKXKmAJElpS24MgkiUNmWh08SJTEzYbPtLvgvBW5f3vmqMH3KE_Ecw3wmO7NmW7U0gUztvWqrCbsATlMCz7I8zFPJ19-7b0eCfv28_DVtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoresponsive Poly(N‑C3 glycine)s</title><source>ACS Publications</source><creator>Robinson, Joshua W ; Secker, Christian ; Weidner, Steffen ; Schlaad, Helmut</creator><creatorcontrib>Robinson, Joshua W ; Secker, Christian ; Weidner, Steffen ; Schlaad, Helmut</creatorcontrib><description>Ring-opening polymerization of N-substituted glycine N-carboxyanhydrides (NCAs) was applied to prepare a series of well-defined poly(N-C3 glycine)s (C3 = n-propyl, allyl, propargyl, and isopropyl), polypeptoids, with molecular weights in the range of 1.8–6.6 kg mol–1. Poly(N-isopropyl glycine), a previously unreported polypeptoid, could be obtained by bulk polymerization of the corresponding NCA in the melt. The samples were characterized by spectroscopy (NMR and FT-IR), size exclusion chromatography (SEC), and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI–ToF MS). The polymers could be dispersed in water up to 20–40 g L–1; the poly(N-propargyl glycine) was not soluble in water. Turbidity measurements of the three water-soluble polypeptoids illustrated cloud point temperatures dependent on structural and electronic properties of the side chain. The cloud point temperatures were found to increase in the order C3 = n-propyl (15–25 °C) &lt; allyl (27–54 °C) &lt; isopropyl (47–58 °C). Long-term annealing of the aqueous solution of poly(N-{n-propyl} glycine) and poly(N-allyl glycine) above the cloud point temperature resulted in the formation of crystalline microparticles with melting points of 188–198 and 157–165 °C (differential scanning calorimetry, DSC), respectively, and rose bud type morphology (scanning electron microscopy, SEM).</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma302412v</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Aminoacid polymers ; Applied sciences ; Exact sciences and technology ; Physicochemistry of polymers ; Synthetic biopolymers</subject><ispartof>Macromolecules, 2013-02, Vol.46 (3), p.580-587</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a326t-63013df55c5c10ba15bc8fc4d65591c61c7fd50c4c44ed2aa103756adb687f393</citedby><cites>FETCH-LOGICAL-a326t-63013df55c5c10ba15bc8fc4d65591c61c7fd50c4c44ed2aa103756adb687f393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma302412v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma302412v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27140299$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Joshua W</creatorcontrib><creatorcontrib>Secker, Christian</creatorcontrib><creatorcontrib>Weidner, Steffen</creatorcontrib><creatorcontrib>Schlaad, Helmut</creatorcontrib><title>Thermoresponsive Poly(N‑C3 glycine)s</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Ring-opening polymerization of N-substituted glycine N-carboxyanhydrides (NCAs) was applied to prepare a series of well-defined poly(N-C3 glycine)s (C3 = n-propyl, allyl, propargyl, and isopropyl), polypeptoids, with molecular weights in the range of 1.8–6.6 kg mol–1. Poly(N-isopropyl glycine), a previously unreported polypeptoid, could be obtained by bulk polymerization of the corresponding NCA in the melt. The samples were characterized by spectroscopy (NMR and FT-IR), size exclusion chromatography (SEC), and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI–ToF MS). The polymers could be dispersed in water up to 20–40 g L–1; the poly(N-propargyl glycine) was not soluble in water. Turbidity measurements of the three water-soluble polypeptoids illustrated cloud point temperatures dependent on structural and electronic properties of the side chain. The cloud point temperatures were found to increase in the order C3 = n-propyl (15–25 °C) &lt; allyl (27–54 °C) &lt; isopropyl (47–58 °C). Long-term annealing of the aqueous solution of poly(N-{n-propyl} glycine) and poly(N-allyl glycine) above the cloud point temperature resulted in the formation of crystalline microparticles with melting points of 188–198 and 157–165 °C (differential scanning calorimetry, DSC), respectively, and rose bud type morphology (scanning electron microscopy, SEM).</description><subject>Aminoacid polymers</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Physicochemistry of polymers</subject><subject>Synthetic biopolymers</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptj8tKw0AYhQdRMFYXvkE3il1E_39uSZZS6gWKuqjrMPkzoym5MaOF7HwFX9EnMVKpG1cHDt858DF2inCJwPGqMQK4RL7ZYxEqDrFKhdpnEYxtnPEsOWRHIawBEJUUETtfvVrfdN6GvmtDtbHTp64eLh6-Pj7nYvpSD1S1dhaO2YEzdbAnvzlhzzeL1fwuXj7e3s-vl7ERXL_FWgCK0ilFihAKg6qg1JEstVIZkkZKXKmAJElpS24MgkiUNmWh08SJTEzYbPtLvgvBW5f3vmqMH3KE_Ecw3wmO7NmW7U0gUztvWqrCbsATlMCz7I8zFPJ19-7b0eCfv28_DVtY</recordid><startdate>20130212</startdate><enddate>20130212</enddate><creator>Robinson, Joshua W</creator><creator>Secker, Christian</creator><creator>Weidner, Steffen</creator><creator>Schlaad, Helmut</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130212</creationdate><title>Thermoresponsive Poly(N‑C3 glycine)s</title><author>Robinson, Joshua W ; Secker, Christian ; Weidner, Steffen ; Schlaad, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a326t-63013df55c5c10ba15bc8fc4d65591c61c7fd50c4c44ed2aa103756adb687f393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aminoacid polymers</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Physicochemistry of polymers</topic><topic>Synthetic biopolymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Joshua W</creatorcontrib><creatorcontrib>Secker, Christian</creatorcontrib><creatorcontrib>Weidner, Steffen</creatorcontrib><creatorcontrib>Schlaad, Helmut</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Joshua W</au><au>Secker, Christian</au><au>Weidner, Steffen</au><au>Schlaad, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoresponsive Poly(N‑C3 glycine)s</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2013-02-12</date><risdate>2013</risdate><volume>46</volume><issue>3</issue><spage>580</spage><epage>587</epage><pages>580-587</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>Ring-opening polymerization of N-substituted glycine N-carboxyanhydrides (NCAs) was applied to prepare a series of well-defined poly(N-C3 glycine)s (C3 = n-propyl, allyl, propargyl, and isopropyl), polypeptoids, with molecular weights in the range of 1.8–6.6 kg mol–1. Poly(N-isopropyl glycine), a previously unreported polypeptoid, could be obtained by bulk polymerization of the corresponding NCA in the melt. The samples were characterized by spectroscopy (NMR and FT-IR), size exclusion chromatography (SEC), and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI–ToF MS). The polymers could be dispersed in water up to 20–40 g L–1; the poly(N-propargyl glycine) was not soluble in water. Turbidity measurements of the three water-soluble polypeptoids illustrated cloud point temperatures dependent on structural and electronic properties of the side chain. The cloud point temperatures were found to increase in the order C3 = n-propyl (15–25 °C) &lt; allyl (27–54 °C) &lt; isopropyl (47–58 °C). Long-term annealing of the aqueous solution of poly(N-{n-propyl} glycine) and poly(N-allyl glycine) above the cloud point temperature resulted in the formation of crystalline microparticles with melting points of 188–198 and 157–165 °C (differential scanning calorimetry, DSC), respectively, and rose bud type morphology (scanning electron microscopy, SEM).</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma302412v</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2013-02, Vol.46 (3), p.580-587
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma302412v
source ACS Publications
subjects Aminoacid polymers
Applied sciences
Exact sciences and technology
Physicochemistry of polymers
Synthetic biopolymers
title Thermoresponsive Poly(N‑C3 glycine)s
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoresponsive%20Poly(N%E2%80%91C3%20glycine)s&rft.jtitle=Macromolecules&rft.au=Robinson,%20Joshua%20W&rft.date=2013-02-12&rft.volume=46&rft.issue=3&rft.spage=580&rft.epage=587&rft.pages=580-587&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma302412v&rft_dat=%3Cacs_cross%3Ed240428320%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true