Thermoresponsive Poly(N‑C3 glycine)s
Ring-opening polymerization of N-substituted glycine N-carboxyanhydrides (NCAs) was applied to prepare a series of well-defined poly(N-C3 glycine)s (C3 = n-propyl, allyl, propargyl, and isopropyl), polypeptoids, with molecular weights in the range of 1.8–6.6 kg mol–1. Poly(N-isopropyl glycine), a pr...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2013-02, Vol.46 (3), p.580-587 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ring-opening polymerization of N-substituted glycine N-carboxyanhydrides (NCAs) was applied to prepare a series of well-defined poly(N-C3 glycine)s (C3 = n-propyl, allyl, propargyl, and isopropyl), polypeptoids, with molecular weights in the range of 1.8–6.6 kg mol–1. Poly(N-isopropyl glycine), a previously unreported polypeptoid, could be obtained by bulk polymerization of the corresponding NCA in the melt. The samples were characterized by spectroscopy (NMR and FT-IR), size exclusion chromatography (SEC), and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI–ToF MS). The polymers could be dispersed in water up to 20–40 g L–1; the poly(N-propargyl glycine) was not soluble in water. Turbidity measurements of the three water-soluble polypeptoids illustrated cloud point temperatures dependent on structural and electronic properties of the side chain. The cloud point temperatures were found to increase in the order C3 = n-propyl (15–25 °C) < allyl (27–54 °C) < isopropyl (47–58 °C). Long-term annealing of the aqueous solution of poly(N-{n-propyl} glycine) and poly(N-allyl glycine) above the cloud point temperature resulted in the formation of crystalline microparticles with melting points of 188–198 and 157–165 °C (differential scanning calorimetry, DSC), respectively, and rose bud type morphology (scanning electron microscopy, SEM). |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma302412v |