Nanorods Formed from a New Class of Peptidomimetics
Although peptide amphiphiles have been explored as nanomaterials for different applications, nanostructures formed by hierarchical molecular assembly of sequence-specific peptidomimetics are much less developed. Such protein-like nanomaterials could enhance the current application of peptide-based a...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2012-09, Vol.45 (18), p.7350-7355 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although peptide amphiphiles have been explored as nanomaterials for different applications, nanostructures formed by hierarchical molecular assembly of sequence-specific peptidomimetics are much less developed. Such protein-like nanomaterials could enhance the current application of peptide-based amphiphiles by enriching the diversity of nanostructures, increasing in vivo stability for biomedical applications, and facilitating the understanding of biomacromolecular self-assembly. Herein we present a biomimetic γ-AApeptide amphiphile which forms nanorods. Our results demonstrate the capability of γ-AApeptide amphiphiles as a potential scaffold for the preparation of biomimetic and bioinspired nanostructures. The programmability and biocompatibility of γ-AApeptides could lead to novel nanomaterials for a wide variety of applications. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma3015992 |