Dielectric study of Poly(styrene-co-butadiene) Composites with Carbon Black, Silica, and Nanoclay
Dielectric spectroscopy is used to measure polymer relaxation in styrene–butadiene rubber (SBR) composites. In addition to the bulk polymer relaxation, the SBR nanocomposites also exhibit a slower relaxation attributed to polymer relaxation at the polymer–nanoparticle interface. The glass transition...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2011-08, Vol.44 (15), p.6162-6171 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dielectric spectroscopy is used to measure polymer relaxation in styrene–butadiene rubber (SBR) composites. In addition to the bulk polymer relaxation, the SBR nanocomposites also exhibit a slower relaxation attributed to polymer relaxation at the polymer–nanoparticle interface. The glass transition temperature associated with the slower relaxation is used as a way to quantify the interaction strength between the polymer and the surface. Comparisons were made among composites containing nanoclay, silica, and carbon black. The interfacial relaxation glass transition temperature of SBR–clay nanocomposites is more than 80 °C higher than the SBR bulk glass transition temperature. An interfacial mode was also observed for SBR–silica nanocomposites, but the interfacial glass transition temperature of SBR–silica nanocomposite is somewhat lower than that of clay nanocomposites. An interfacial mode is also seen in the carbon black filled system, but the signal is too weak to analyze quantitatively. The interfacial polymer relaxation in SBR–clay nanocomposites is stronger compared to both SBR–carbon black and SBR–silica composites indicating a stronger interfacial interaction in the nanocomposites containing clay. These results are consistent with dynamic shear rheology and dynamic mechanical analysis measurements showing a more pronounced reinforcement for the clay nanocomposites. Comparisons were also made among clay nanocomposites using different SBRs of varying styrene concentration and architecture. The interfacial glass transition temperature of SBR–clay nanocomposites increases as the amount of styrene in SBR increases indicating that styrene interacts more strongly than butadiene with clay. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma200044c |