Dually Responsive Multiblock Copolymers via Reversible Addition−Fragmentation Chain Transfer Polymerization: Synthesis of Temperature- and Redox-Responsive Copolymers of Poly(N-isopropylacrylamide) and Poly(2-(dimethylamino)ethyl methacrylate)
We report the synthesis of temperature- and redox-responsive multiblock copolymers by reversible addition−fragmentation chain transfer (RAFT) polymerization. Well-defined α,ω-bis(dithioester)-functionalized poly(N-isopropylacrylamide) (PNIPAM) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2007-11, Vol.40 (24), p.8617-8624 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the synthesis of temperature- and redox-responsive multiblock copolymers by reversible addition−fragmentation chain transfer (RAFT) polymerization. Well-defined α,ω-bis(dithioester)-functionalized poly(N-isopropylacrylamide) (PNIPAM) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) were prepared using 1,4-bis(thiobenzoylthiomethyl)benzene and 1,4-bis(2-(thiobenzoylthio)prop-2-yl)benzene as RAFT agents, respectively. Dually responsive multiblock copolymers were synthesized in a single aminolysis/oxidation step from the α,ω-bis(dithioester)-terminated PNIPAM and PDMAEMA. The copolymers and their stimulus-responsive behavior were characterized by size exclusion chromatography, NMR, light scattering, and atomic force microscopy. Because of the presence of redox-sensitive disulfide bonds between the blocks, the copolymers were readily reduced to the starting polymer blocks. The presence of temperature-responsive PNIPAM blocks provided copolymers with the ability to assemble into core−shell nanostructures with hydrophobic PNIPAM as the core and cationic PDMAEMA as the stabilizing shell when above the phase transition temperatures of PNIPAM. The temperature-induced assembly of the copolymers also showed substantial pH sensitivity. The phase transition temperature increased with decreasing pH, while the molecular weight of the assemblies decreased. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma071176p |