Linear Low-Density Polyethylene Containing Precisely Placed Hexyl Branches

A structural investigation into model linear low-density polyethylene containing precise hexyl branches has been completed using metathesis chemistry. These models based on ethylene/1-octene (EO) copolymers are versions of industrially produced metallocene copolymers; however, they contain exact pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2007-06, Vol.40 (13), p.4414-4423
Hauptverfasser: Sworen, John C, Wagener, Kenneth B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A structural investigation into model linear low-density polyethylene containing precise hexyl branches has been completed using metathesis chemistry. These models based on ethylene/1-octene (EO) copolymers are versions of industrially produced metallocene copolymers; however, they contain exact primary structures and constant methylene sequence lengths. Acyclic diene metathesis (ADMET) polymerization has been used to produce copolymers containing only hexyl branches on every 9th, 15th, or 21st carbon along the backbone of polyethylene. Thermal examination of these macromolecules has demonstrated the first narrow melting profile for EO copolymers with high 1-octene incorporation (111, 67, and 48 hexyl branches per 1000 carbons). Further, a new synthetic methodology has been developed to produce branched, pure diene functional monomers with the ability to produce any model LLDPE in good yields.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma070317k