Bright-White Light-Emitting Devices Based on a Single Polymer Exhibiting Simultaneous Blue, Green, and Red Emissions
We have developed efficient white-light-emitting polymers through the incorporation of low band gap green-light-emitting benzothiadiazole and red-light-emitting bisthiophenylbenzothiadiazole moieties into the backbone of a blue-light-emitting bipolar polyfluorene copolymer. Partial energy transfer f...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2007-01, Vol.40 (2), p.247-252 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed efficient white-light-emitting polymers through the incorporation of low band gap green-light-emitting benzothiadiazole and red-light-emitting bisthiophenylbenzothiadiazole moieties into the backbone of a blue-light-emitting bipolar polyfluorene copolymer. Partial energy transfer from the blue-fluorescent polyfluorene backbone to the green- and red-fluorescent components resulted in individual emissions from the three emissive species. By carefully controlling the concentrations of the low-energy-emitting species in the resulting copolymers, the emission of white light, with contributions from each of the three primary colors, was achieved. Efficient polymer light-emitting devices prepared using these copolymers exhibited luminance efficiencies as high as 4.87 cd/A with color coordinates (0.37, 0.36) that were very close to the ideal CIE chromaticity coordinates for pure white light (0.33, 0.33). In addition, the color coordinates remained almost unchanged over a range of operating potentials. A mechanistic study suggested that energy transfer from the fluorene segments to the low band gap units, rather than charge trapping, was the main operating process involved in the electroluminescent process. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma062192+ |