Phase Behavior of Poly(vinyl methyl ether) in Deuterium Oxide

The Wertheim lattice thermodynamic perturbation theory is used to calculate the liquid−liquid and solid−liquid coexistence data of a model polymer solution. The theory predicts bimodal LCST phase behavior as well as an unusual step with composition in the solid−liquid equilibrium of the solvent. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2005-11, Vol.38 (24), p.10234-10243
Hauptverfasser: Van Durme, Kurt, Loozen, Els, Nies, Erik, Van Mele, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10243
container_issue 24
container_start_page 10234
container_title Macromolecules
container_volume 38
creator Van Durme, Kurt
Loozen, Els
Nies, Erik
Van Mele, Bruno
description The Wertheim lattice thermodynamic perturbation theory is used to calculate the liquid−liquid and solid−liquid coexistence data of a model polymer solution. The theory predicts bimodal LCST phase behavior as well as an unusual step with composition in the solid−liquid equilibrium of the solvent. These theoretical predictions are discussed in relation to the experimental results obtained for the poly(vinyl methyl ether) (PVME)/D2O system. The apparent heat capacity signal from modulated temperature DSC (MTDSC) is used to measure the onset of LCST phase separation along with the melting temperature of D2O in the presence of PVME. The experimentally observed trace of the melting endotherm allows calculating the complete melting line of the solvent, in agreement with theory. Moreover, an alternative approach, employing Fourier transform infrared spectroscopy, is established from which the equilibrium melting line of D2O could be determined, again confirming theoretical predictions. The peculiar concentration dependence of the melting curve of ice provides a new explanation for (i) the double melting endotherm observed in (MT)DSC and (ii) the inhibited crystallization in highly concentrated aqueous PVME mixtures. Finally, the existence of a low-temperature UCST miscibility gap is suggested via an insightful examination of the glass transition region.
doi_str_mv 10.1021/ma051745y
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma051745y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a221932913</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-a0a63f61a13fdca2b83b9c2d18ea78e3eea2452ac7a91f77a1372efca64c9c643</originalsourceid><addsrcrecordid>eNptjztPwzAUhS0EEqUw8A-8INEh4GvHcTIwQHlKldoB5ujWvVZd5VHZbdX8e4KK6MJyzvKdI32MXYO4AyHhvkahwaS6O2ED0FIkOlf6lA2EkGlSyMKcs4sYV0IA6FQN2MNsiZH4Ey1x59vAW8dnbdXd7nzTVbymzbKvPimMuG_4M203FPy25tO9X9AlO3NYRbr67SH7en35HL8nk-nbx_hxkqDSepOgwEy5DBCUW1iU81zNCysXkBOanBQRylRLtAYLcMb0nJHkLGapLWyWqiEbHX5taGMM5Mp18DWGrgRR_niXf949e3Ng1xgtVi5gY308DowCpYQ4cmhjuWq3oekN_vn7Bt4jY48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase Behavior of Poly(vinyl methyl ether) in Deuterium Oxide</title><source>ACS Publications</source><creator>Van Durme, Kurt ; Loozen, Els ; Nies, Erik ; Van Mele, Bruno</creator><creatorcontrib>Van Durme, Kurt ; Loozen, Els ; Nies, Erik ; Van Mele, Bruno</creatorcontrib><description>The Wertheim lattice thermodynamic perturbation theory is used to calculate the liquid−liquid and solid−liquid coexistence data of a model polymer solution. The theory predicts bimodal LCST phase behavior as well as an unusual step with composition in the solid−liquid equilibrium of the solvent. These theoretical predictions are discussed in relation to the experimental results obtained for the poly(vinyl methyl ether) (PVME)/D2O system. The apparent heat capacity signal from modulated temperature DSC (MTDSC) is used to measure the onset of LCST phase separation along with the melting temperature of D2O in the presence of PVME. The experimentally observed trace of the melting endotherm allows calculating the complete melting line of the solvent, in agreement with theory. Moreover, an alternative approach, employing Fourier transform infrared spectroscopy, is established from which the equilibrium melting line of D2O could be determined, again confirming theoretical predictions. The peculiar concentration dependence of the melting curve of ice provides a new explanation for (i) the double melting endotherm observed in (MT)DSC and (ii) the inhibited crystallization in highly concentrated aqueous PVME mixtures. Finally, the existence of a low-temperature UCST miscibility gap is suggested via an insightful examination of the glass transition region.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma051745y</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Solution and gel properties</subject><ispartof>Macromolecules, 2005-11, Vol.38 (24), p.10234-10243</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-a0a63f61a13fdca2b83b9c2d18ea78e3eea2452ac7a91f77a1372efca64c9c643</citedby><cites>FETCH-LOGICAL-a355t-a0a63f61a13fdca2b83b9c2d18ea78e3eea2452ac7a91f77a1372efca64c9c643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma051745y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma051745y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17313300$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Durme, Kurt</creatorcontrib><creatorcontrib>Loozen, Els</creatorcontrib><creatorcontrib>Nies, Erik</creatorcontrib><creatorcontrib>Van Mele, Bruno</creatorcontrib><title>Phase Behavior of Poly(vinyl methyl ether) in Deuterium Oxide</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>The Wertheim lattice thermodynamic perturbation theory is used to calculate the liquid−liquid and solid−liquid coexistence data of a model polymer solution. The theory predicts bimodal LCST phase behavior as well as an unusual step with composition in the solid−liquid equilibrium of the solvent. These theoretical predictions are discussed in relation to the experimental results obtained for the poly(vinyl methyl ether) (PVME)/D2O system. The apparent heat capacity signal from modulated temperature DSC (MTDSC) is used to measure the onset of LCST phase separation along with the melting temperature of D2O in the presence of PVME. The experimentally observed trace of the melting endotherm allows calculating the complete melting line of the solvent, in agreement with theory. Moreover, an alternative approach, employing Fourier transform infrared spectroscopy, is established from which the equilibrium melting line of D2O could be determined, again confirming theoretical predictions. The peculiar concentration dependence of the melting curve of ice provides a new explanation for (i) the double melting endotherm observed in (MT)DSC and (ii) the inhibited crystallization in highly concentrated aqueous PVME mixtures. Finally, the existence of a low-temperature UCST miscibility gap is suggested via an insightful examination of the glass transition region.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Solution and gel properties</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptjztPwzAUhS0EEqUw8A-8INEh4GvHcTIwQHlKldoB5ujWvVZd5VHZbdX8e4KK6MJyzvKdI32MXYO4AyHhvkahwaS6O2ED0FIkOlf6lA2EkGlSyMKcs4sYV0IA6FQN2MNsiZH4Ey1x59vAW8dnbdXd7nzTVbymzbKvPimMuG_4M203FPy25tO9X9AlO3NYRbr67SH7en35HL8nk-nbx_hxkqDSepOgwEy5DBCUW1iU81zNCysXkBOanBQRylRLtAYLcMb0nJHkLGapLWyWqiEbHX5taGMM5Mp18DWGrgRR_niXf949e3Ng1xgtVi5gY308DowCpYQ4cmhjuWq3oekN_vn7Bt4jY48</recordid><startdate>20051129</startdate><enddate>20051129</enddate><creator>Van Durme, Kurt</creator><creator>Loozen, Els</creator><creator>Nies, Erik</creator><creator>Van Mele, Bruno</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051129</creationdate><title>Phase Behavior of Poly(vinyl methyl ether) in Deuterium Oxide</title><author>Van Durme, Kurt ; Loozen, Els ; Nies, Erik ; Van Mele, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-a0a63f61a13fdca2b83b9c2d18ea78e3eea2452ac7a91f77a1372efca64c9c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Solution and gel properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Durme, Kurt</creatorcontrib><creatorcontrib>Loozen, Els</creatorcontrib><creatorcontrib>Nies, Erik</creatorcontrib><creatorcontrib>Van Mele, Bruno</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Durme, Kurt</au><au>Loozen, Els</au><au>Nies, Erik</au><au>Van Mele, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Behavior of Poly(vinyl methyl ether) in Deuterium Oxide</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2005-11-29</date><risdate>2005</risdate><volume>38</volume><issue>24</issue><spage>10234</spage><epage>10243</epage><pages>10234-10243</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>The Wertheim lattice thermodynamic perturbation theory is used to calculate the liquid−liquid and solid−liquid coexistence data of a model polymer solution. The theory predicts bimodal LCST phase behavior as well as an unusual step with composition in the solid−liquid equilibrium of the solvent. These theoretical predictions are discussed in relation to the experimental results obtained for the poly(vinyl methyl ether) (PVME)/D2O system. The apparent heat capacity signal from modulated temperature DSC (MTDSC) is used to measure the onset of LCST phase separation along with the melting temperature of D2O in the presence of PVME. The experimentally observed trace of the melting endotherm allows calculating the complete melting line of the solvent, in agreement with theory. Moreover, an alternative approach, employing Fourier transform infrared spectroscopy, is established from which the equilibrium melting line of D2O could be determined, again confirming theoretical predictions. The peculiar concentration dependence of the melting curve of ice provides a new explanation for (i) the double melting endotherm observed in (MT)DSC and (ii) the inhibited crystallization in highly concentrated aqueous PVME mixtures. Finally, the existence of a low-temperature UCST miscibility gap is suggested via an insightful examination of the glass transition region.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma051745y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2005-11, Vol.38 (24), p.10234-10243
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma051745y
source ACS Publications
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
Solution and gel properties
title Phase Behavior of Poly(vinyl methyl ether) in Deuterium Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Behavior%20of%20Poly(vinyl%20methyl%20ether)%20in%20Deuterium%20Oxide&rft.jtitle=Macromolecules&rft.au=Van%20Durme,%20Kurt&rft.date=2005-11-29&rft.volume=38&rft.issue=24&rft.spage=10234&rft.epage=10243&rft.pages=10234-10243&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma051745y&rft_dat=%3Cacs_cross%3Ea221932913%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true