SANS Studies on Deformation Mechanism of Slide-Ring Gel

The deformation mechanism of “slide-ring” (SR) gels was investigated with small-angle neutron scattering (SANS). The SR gels were prepared by coupling α-cyclodextrin (CD) molecules on polyrotaxane chains consisting of poly(ethylene glycol) and CD. Because of a hollow structure of CD molecules, the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2005-07, Vol.38 (14), p.6161-6167
Hauptverfasser: Karino, Takeshi, Okumura, Yasushi, Zhao, Changming, Kataoka, Toshiyuki, Ito, Kohzo, Shibayama, Mitsuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The deformation mechanism of “slide-ring” (SR) gels was investigated with small-angle neutron scattering (SANS). The SR gels were prepared by coupling α-cyclodextrin (CD) molecules on polyrotaxane chains consisting of poly(ethylene glycol) and CD. Because of a hollow structure of CD molecules, the cross-links made of CD molecules in a figure-of-eight shape can slide along the polymer chain. A normal butterfly pattern was observed for the first time in two-dimensional SANS isointensity profiles for the SR gels under uniaxial deformation, where the normal butterfly pattern means a prolate isointensity pattern in the direction perpendicular to the stretching direction. However, by either increasing the cross-link density or increasing the stretching ratio, the normal butterfly patterns changed to abnormal butterfly patterns as are commonly observed in conventional covalent-bonded chemical gels. The difference in the deformation mechanism as well as the cross-linking inhomogeneities between the SR gels and the covalent-bonded chemical gels is discussed by focusing on the unique architecture of the SR gels.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma050624v