Incorporation of Nonelectrostatic Interactions in the Poisson−Boltzmann Equation

We develop a general formalism for including nonelectrostatic interactions, such as excluded volume interactions, in the Poisson−Boltzmann (PB) equation. The resulting theory can be applied to any boundary condition and is as easy to numerically implement as the original PB equation. As a specific e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 1999-05, Vol.15 (11), p.3726-3730
Hauptverfasser: Lue, L, Zoeller, N, Blankschtein, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3730
container_issue 11
container_start_page 3726
container_title Langmuir
container_volume 15
creator Lue, L
Zoeller, N
Blankschtein, D
description We develop a general formalism for including nonelectrostatic interactions, such as excluded volume interactions, in the Poisson−Boltzmann (PB) equation. The resulting theory can be applied to any boundary condition and is as easy to numerically implement as the original PB equation. As a specific example, we combine the PB equation with the Boublik−Mansoori−Carnahan−Starling equation of state to model charged hard-sphere systems. This theory is applied to a charged sphere immersed in a salt solution, and the electric field and ion distribution about the sphere are computed.
doi_str_mv 10.1021/la9813376
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la9813376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d182187632</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-9b6eaee7e3882fb90e9e62c64e6ac6deb3a6fdb81f93b716b3e7d6c193032e303</originalsourceid><addsrcrecordid>eNptkEtOwzAQhi0EEqWw4AZZwIJFwI5TP5a0KlCpgqqUteW4E5GS2sV2JcoJWHNETkJKUNmwmZHm_-b1I3RK8CXBGbmqtRSEUs72UIf0Mpz2RMb3UQfznKY8Z_QQHYWwwBhLmssOmo6scX7lvI6Vs4krk3tnoQYTvQuxKZpkZCN4bbZ6SCqbxGdIJq4Kwdmvj8--q-P7UlubDF_XP0OO0UGp6wAnv7mLnm6Gs8FdOn64HQ2ux6mmWR5TWTDQAByoEFlZSAwSWGZYDkwbNoeCalbOC0FKSQtOWEGBz5khkmKaQRO66KKda5pTg4dSrXy11H6jCFZbM9TOjIY9a9mVDkbXpdfWVOGvQWBGqWiwtMWqEOFtJ2v_ohinvKdmk0c14NPxrC_6Km_485bXJqiFW3vbPPzP-m8FNXws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incorporation of Nonelectrostatic Interactions in the Poisson−Boltzmann Equation</title><source>ACS Publications</source><creator>Lue, L ; Zoeller, N ; Blankschtein, D</creator><creatorcontrib>Lue, L ; Zoeller, N ; Blankschtein, D</creatorcontrib><description>We develop a general formalism for including nonelectrostatic interactions, such as excluded volume interactions, in the Poisson−Boltzmann (PB) equation. The resulting theory can be applied to any boundary condition and is as easy to numerically implement as the original PB equation. As a specific example, we combine the PB equation with the Boublik−Mansoori−Carnahan−Starling equation of state to model charged hard-sphere systems. This theory is applied to a charged sphere immersed in a salt solution, and the electric field and ion distribution about the sphere are computed.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la9813376</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Solution properties ; Solutions</subject><ispartof>Langmuir, 1999-05, Vol.15 (11), p.3726-3730</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-9b6eaee7e3882fb90e9e62c64e6ac6deb3a6fdb81f93b716b3e7d6c193032e303</citedby><cites>FETCH-LOGICAL-a324t-9b6eaee7e3882fb90e9e62c64e6ac6deb3a6fdb81f93b716b3e7d6c193032e303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la9813376$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la9813376$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1806338$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lue, L</creatorcontrib><creatorcontrib>Zoeller, N</creatorcontrib><creatorcontrib>Blankschtein, D</creatorcontrib><title>Incorporation of Nonelectrostatic Interactions in the Poisson−Boltzmann Equation</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We develop a general formalism for including nonelectrostatic interactions, such as excluded volume interactions, in the Poisson−Boltzmann (PB) equation. The resulting theory can be applied to any boundary condition and is as easy to numerically implement as the original PB equation. As a specific example, we combine the PB equation with the Boublik−Mansoori−Carnahan−Starling equation of state to model charged hard-sphere systems. This theory is applied to a charged sphere immersed in a salt solution, and the electric field and ion distribution about the sphere are computed.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Solution properties</subject><subject>Solutions</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkEtOwzAQhi0EEqWw4AZZwIJFwI5TP5a0KlCpgqqUteW4E5GS2sV2JcoJWHNETkJKUNmwmZHm_-b1I3RK8CXBGbmqtRSEUs72UIf0Mpz2RMb3UQfznKY8Z_QQHYWwwBhLmssOmo6scX7lvI6Vs4krk3tnoQYTvQuxKZpkZCN4bbZ6SCqbxGdIJq4Kwdmvj8--q-P7UlubDF_XP0OO0UGp6wAnv7mLnm6Gs8FdOn64HQ2ux6mmWR5TWTDQAByoEFlZSAwSWGZYDkwbNoeCalbOC0FKSQtOWEGBz5khkmKaQRO66KKda5pTg4dSrXy11H6jCFZbM9TOjIY9a9mVDkbXpdfWVOGvQWBGqWiwtMWqEOFtJ2v_ohinvKdmk0c14NPxrC_6Km_485bXJqiFW3vbPPzP-m8FNXws</recordid><startdate>19990525</startdate><enddate>19990525</enddate><creator>Lue, L</creator><creator>Zoeller, N</creator><creator>Blankschtein, D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990525</creationdate><title>Incorporation of Nonelectrostatic Interactions in the Poisson−Boltzmann Equation</title><author>Lue, L ; Zoeller, N ; Blankschtein, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-9b6eaee7e3882fb90e9e62c64e6ac6deb3a6fdb81f93b716b3e7d6c193032e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Solution properties</topic><topic>Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lue, L</creatorcontrib><creatorcontrib>Zoeller, N</creatorcontrib><creatorcontrib>Blankschtein, D</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lue, L</au><au>Zoeller, N</au><au>Blankschtein, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of Nonelectrostatic Interactions in the Poisson−Boltzmann Equation</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>1999-05-25</date><risdate>1999</risdate><volume>15</volume><issue>11</issue><spage>3726</spage><epage>3730</epage><pages>3726-3730</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>We develop a general formalism for including nonelectrostatic interactions, such as excluded volume interactions, in the Poisson−Boltzmann (PB) equation. The resulting theory can be applied to any boundary condition and is as easy to numerically implement as the original PB equation. As a specific example, we combine the PB equation with the Boublik−Mansoori−Carnahan−Starling equation of state to model charged hard-sphere systems. This theory is applied to a charged sphere immersed in a salt solution, and the electric field and ion distribution about the sphere are computed.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/la9813376</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 1999-05, Vol.15 (11), p.3726-3730
issn 0743-7463
1520-5827
language eng
recordid cdi_crossref_primary_10_1021_la9813376
source ACS Publications
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Solution properties
Solutions
title Incorporation of Nonelectrostatic Interactions in the Poisson−Boltzmann Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20Nonelectrostatic%20Interactions%20in%20the%20Poisson%E2%88%92Boltzmann%20Equation&rft.jtitle=Langmuir&rft.au=Lue,%20L&rft.date=1999-05-25&rft.volume=15&rft.issue=11&rft.spage=3726&rft.epage=3730&rft.pages=3726-3730&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la9813376&rft_dat=%3Cacs_cross%3Ed182187632%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true