Gold Nanoparticle Self-Assembly in Saturated Phospholipid Monolayers
Self-assembly of nanostructures on surfaces is a promising area in the emerging field of “bottom-up nanolithography”. We describe a systematic analysis of hydrophobically capped gold nanoparticle (Au NP) assemblies created within monolayers of saturated phospholipids deposited at the air/water inter...
Gespeichert in:
Veröffentlicht in: | Langmuir 2010-06, Vol.26 (11), p.7893-7898 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-assembly of nanostructures on surfaces is a promising area in the emerging field of “bottom-up nanolithography”. We describe a systematic analysis of hydrophobically capped gold nanoparticle (Au NP) assemblies created within monolayers of saturated phospholipids deposited at the air/water interface. We show that the Au NPs are segregated within the mixed monolayers, forming distinct configurations. Microscopy analysis reveals that organized Au NP aggregates, including wires, rings, and “doughnut-shape” structures, are observed only within condensed-phase monolayers comprising phospholipids exhibiting longer acyl side-chains. In these monolayers, the Au NPs are localized at the edges of the condensed phospholipid domains. In addition to the pronounced effect of the phospholipid phases at the air/water interface, NP organization was found to depend upon the hydrophobic capping agents of the particles. The Au nanostructures assembled at the air/water interface can be transferred onto solid substrates, suggesting that the self-assembly monolayer approach could be exploited for practical nanoelectronic and sensing applications. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la9047903 |