Highly Ordered Fe–Au Heterostructured Nanorod Arrays and Their Exceptional Near-Infrared Plasmonic Signature

The potential of highly ordered array nanostructures in sensing applications is well recognized, particularly with the ability to define the structural composition and arrangement of the individual nanorods accurately. The use of heterogeneous nanostructures generates an additional degree of freedom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-12, Vol.28 (49), p.17101-17107
Hauptverfasser: Zhang, Yong, Ashall, Brian, Doyle, Gillian, Zerulla, Dominic, Lee, Gil U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential of highly ordered array nanostructures in sensing applications is well recognized, particularly with the ability to define the structural composition and arrangement of the individual nanorods accurately. The use of heterogeneous nanostructures generates an additional degree of freedom, which can be used to tailor the optical response of such arrays. In this article, we report on the fabrication and characterization of well-defined Fe–Au bisegmented nanorod arrays in a repeating hexagonal arrangement. Through an asymmetric etching method, free-standing Fe–Au nanorod arrays on a gold-coated substrate were produced with an inter-rod spacing of 26 nm. This separation distance renders the array capable of sustaining resonant electromagnetic wave coupling between individual rods. Owing to this coupling, the subwavelength arrangement, and the structural heterogeneity, the nanorod arrays exhibit unique plasmonic responses in the near-infrared (NIR) range. Enhanced sensitivity in this spectral region has not been identified for gold-only nanorods of equivalent dimensions. The NIR response offers confirmation of the potential of these highly ordered, high-density arrays for biomedical relevant applications, such as subcutaneous spectroscopy and biosensing.
ISSN:0743-7463
1520-5827
DOI:10.1021/la302290v