Polyelectrolyte Spin-Assembly

Polyelectrolyte thin films composed of alternating layers were spin-assembled by sequentially dropping cationic and anionic aqueous solutions onto a spinning substrate. In this work, we show the applicability of our technique to multiple systems and present two methods for producing linear film grow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2002-01, Vol.18 (1), p.168-173
Hauptverfasser: Chiarelli, Peter A, Johal, Malkiat S, Holmes, Daniel J, Casson, Joanna L, Robinson, Jeanne M, Wang, Hsing-Lin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyelectrolyte thin films composed of alternating layers were spin-assembled by sequentially dropping cationic and anionic aqueous solutions onto a spinning substrate. In this work, we show the applicability of our technique to multiple systems and present two methods for producing linear film growth. The polycations used were PEI (poly(ethylenimine), PDDA (poly(diallyldimethylammonium chloride), PAH (poly(allylamine hydrochloride), and two poly(propylenimine) dendrimers (generations 3.0 and 4.0). The polyanions used were PAZO (poly[1-[4-(3-carboxy-4-hydroxy-phenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt]), PSS (poly(styrenesulfonate)), and PAA (poly(acrylic acid)). Layer thicknesses for all systems were determined using single-wavelength ellipsometry. UV−vis spectroscopy was used to measure deposition amounts in films containing the chromophoric polyanions PAZO and PSS. We demonstrate the ability to spin-assemble multilayered thin films up to 50 bilayers with linear increases in deposition amount between bilayers. Additionally, we show that layers of a single polyelectrolyte species can be spin-assembled with multiple deposition cycles in which consistent amounts are deposited in each cycle. In a comparison of films built from two dendrimer generations, films incorporating generation 3.0 dendrimer and PAZO show signs of higher interpenetration between layers and a more collapsed film structure than films assembled from generation 4.0 dendrimer and PAZO. Our results also suggest that a substrate effect influences the packing density of the first few bilayers, eventually dissipating around a film thickness of 50−80 Å.
ISSN:0743-7463
1520-5827
DOI:10.1021/la011333s