Physical Basis for Long-Lived Electronic Coherence in Photosynthetic Light-Harvesting Systems

The physical basis for observed long-lived electronic coherence in photosynthetic light-harvesting systems is identified using an analytically soluble model. Three physical features are found to be responsible for their long coherence lifetimes, (i) the small energy gap between excitonic states, (ii...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2011-11, Vol.2 (21), p.2728-2732
Hauptverfasser: Pachón, Leonardo A, Brumer, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The physical basis for observed long-lived electronic coherence in photosynthetic light-harvesting systems is identified using an analytically soluble model. Three physical features are found to be responsible for their long coherence lifetimes, (i) the small energy gap between excitonic states, (ii) the small ratio of the energy gap to the coupling between excitonic states, and (iii) the fact that the molecular characteristics place the system in an effective low-temperature regime, even at ambient conditions. Using this approach, we obtain decoherence times for a dimer model with FMO parameters of ∼160 fs at 77 K and ∼80 fs at 277 K. As such, significant oscillations are found to persist for 600 and 300 fs, respectively, in accord with the experiment and with previous computations. Similar good agreement is found for PC645 at room temperature, with oscillations persisting for 400 fs. The analytic expressions obtained provide direct insight into the parameter dependence of the decoherence time scales.
ISSN:1948-7185
1948-7185
DOI:10.1021/jz201189p