Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon
One of the recent hot topics in the fields of plasmonics and related nanophotonics is optical trapping of nano/microparticles based on surface plasmon. Experimental demonstration of such trapping by gap-mode plasmon has hitherto been limited so far to a few reports in which submicrometer polymer bea...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2010-08, Vol.1 (15), p.2327-2333 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the recent hot topics in the fields of plasmonics and related nanophotonics is optical trapping of nano/microparticles based on surface plasmon. Experimental demonstration of such trapping by gap-mode plasmon has hitherto been limited so far to a few reports in which submicrometer polymer beads were trapped with intense irradiation at MW/cm2, satisfying an energetic condition of U > kT. (U is the potential energy of the trap and kT is an averaged thermal background energy.) We demonstrate plasmon-based optical trapping of a luminescent quantum dot (Q dot, diameter ≥10 nm) with a very weak irradiation (0.5−10 kW/cm2). The most important discovery is that the Q dot trapping was clearly observed through luminescence detection even under an energetic condition of U < kT, on the basis of which we propose a novel concept that is peculiar to plasmon-based trapping at a nanogap. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/jz100659x |