Wetting of Hydrophobic Organic Surfaces and Its Implications to Organic Aerosols in the Atmosphere

The interaction between water and organic substances is of extreme importance in physical, biological, and geological chemistries. Understanding the interactions between water and organic interfaces is one of the earliest chemical quandaries. In this research, self-assembled monolayers (SAMs) were u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2000-06, Vol.104 (22), p.5238-5245
Hauptverfasser: Rudich, Yinon, Benjamin, Ilan, Naaman, Ron, Thomas, Elan, Trakhtenberg, Sofia, Ussyshkin, Rachel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction between water and organic substances is of extreme importance in physical, biological, and geological chemistries. Understanding the interactions between water and organic interfaces is one of the earliest chemical quandaries. In this research, self-assembled monolayers (SAMs) were used as a tool to investigate the interaction between water molecules and hydrophobic surfaces. Real-time adsorption and desorption kinetics of water on hydrophobic SAM surfaces was monitored using a new type of field effect transistor (FET)-like device called MOCSER (molecular controlled semiconductor resistor) coated with SAMs. A quartz crystal microbalance (QCM) was used as a complementary technique to give an estimate of total water mass adsorbed. It is shown that water adsorption depends on relative humidity and is reversible. The amount of adsorbed water increased with surface corrugation. The measurements suggest that adsorption takes place as small water clusters, originating on irregularities on the surface organic layer. Molecular dynamics simulations were carried out to study the interactions of water and hydrophobic surfaces as well. These simulations also suggest the formation of water microdroplets on hydrophobic surfaces, and indicate a strong correlation between increased surface corrugation and adsorption. This paper examines the possible consequences of these interactions on the properties of organic aerosols in the troposphere.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp994203p