Electronic Structure Calculation of the Structures and Energies of the Three Pure Polymorphic Forms of Crystalline HMX

The molecular structures and energetic stabilities of the three pure polymorphic forms of crystalline HMX were calculated using a first-principles electronic-structure method. The computations were performed using the local density approximation in conjunction with localized “fireball” orbitals and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical Surfaces, Interfaces, amp Biophysical, 2000-02, Vol.104 (5), p.1009-1013
Hauptverfasser: Lewis, James P, Sewell, Thomas D, Evans, Richard B, Voth, Gregory A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The molecular structures and energetic stabilities of the three pure polymorphic forms of crystalline HMX were calculated using a first-principles electronic-structure method. The computations were performed using the local density approximation in conjunction with localized “fireball” orbitals and a minimal basis set. Optimized cell parameters and molecular geometries were obtained, subject only to preservation of the experimental lattice angles and relative lattice lengths. The latter constraint was removed in some calculations for β-HMX. Within these constraints, the comparison between theory and experiment is found to be good. The structures, relative energies of the polymorphs, and bulk moduli are in general agreement with the available experimental data.
ISSN:1520-6106
1089-5647
1520-5207
DOI:10.1021/jp9926037