New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions

We propose a new formalism, Charge Model 2 (CM2), to obtain accurate partial atomic charges from a population analysis of wave functions by a parametrized mapping procedure, so that the resulting charges reproduce highly accurate charge-dependent observables. The new method, which produces class IV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 1998-03, Vol.102 (10), p.1820-1831
Hauptverfasser: Li, Jiabo, Zhu, Tianhai, Cramer, Christopher J, Truhlar, Donald G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new formalism, Charge Model 2 (CM2), to obtain accurate partial atomic charges from a population analysis of wave functions by a parametrized mapping procedure, so that the resulting charges reproduce highly accurate charge-dependent observables. The new method, which produces class IV charges, is illustrated by developing CM2 mappings of Löwdin charges obtained from semiempirical and ab initio Hartree−Fock theory and density functional theory, in particular AM1, PM3, HF/MIDI!, HF/6-31G*, HF/6-31+G*, BPW91/MIDI!, BPW91/6-31G*, B3LYP/MIDI!, and BPW91/DZVP calculations. The CM2 partial charges reproduce experimental dipole moments with root-mean-square errors that are typically a factor of 7 better than dipole moments computed from Mulliken population analysis, a factor of 3 better than dipole moments computed by Löwdin analysis, and even a factor of 2 better than dipole moments computed from the continuous electron denisty. At the HF/6-31G* and B3LYP/MIDI! levels, the new charge model yields root-mean-square errors of 0.19 and 0.18 D, respectively, for the dipole moments of a set of 211 polar molecules containing a diverse range of structures and organic functional groups and the elements H, C, N, O, F, Si, P, S, Cl, Br, and I. A comparison shows that the new charge model predicts dipole moments more accurately than MP2/cc-pVDZ calculations, which are considerably more expensive. The quality of the results is similarly good for electrostatic potentials and for the other parametrizations as well.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp972682r