Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes
We report for the first time a facile and direct synthesis of large-scale cobalt monoxide (CoO) porous nanowire arrays (NWAs) with robust mechanical adhesion to flexible conductive substrate (Ti foil) by a two-step method. Significantly raw salt cubic CoO of high quality from the complete pyrolysis...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2010-01, Vol.114 (2), p.929-932 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report for the first time a facile and direct synthesis of large-scale cobalt monoxide (CoO) porous nanowire arrays (NWAs) with robust mechanical adhesion to flexible conductive substrate (Ti foil) by a two-step method. Significantly raw salt cubic CoO of high quality from the complete pyrolysis of cobalt-hydroxide-carbonate (precursor) is achieved. When serving as lithium-ion battery electrodes in the absence of any ancillary materials (carbon black and binder), the as-obtained well-aligned CoO NWAs, possessing both the completely reversible electrochemical properties and unique advantages originating from integrated one-dimensional (1D) nanostructured architecture, exhibit good high-rate capability at a rate of 1 C (716 mA/g), 2 C (1432 mA/g), 4 C (2864 mA/g), and 6 C (4296 mA/g), respectively. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp909785g |