Infrared Spectroscopy of Jet-Cooled Tautomeric Dimer of 7-Azaindole: A Model System for the Ground-State Double Proton Transfer Reaction
To investigate the ground-state double proton transfer (GSDPT) reaction, we carried out a laser spectroscopic study on the tautomeric dimer of 7-azaindole in a supersonic jet. We have recorded an infrared (IR) spectrum of the tautomeric dimer in the S0 state. The NH band exhibits a broad and less-st...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2010-03, Vol.114 (9), p.3199-3206 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To investigate the ground-state double proton transfer (GSDPT) reaction, we carried out a laser spectroscopic study on the tautomeric dimer of 7-azaindole in a supersonic jet. We have recorded an infrared (IR) spectrum of the tautomeric dimer in the S0 state. The NH band exhibits a broad and less-structured pattern. The band pattern is discussed on the basis of the hierarchical vibrational interaction mechanism. As a result, much higher density of state (DOS) at the NH stretch level is expected than that of the normal dimer. Such a high DOS should be related to the anharmonicity of the potential energy surface near the barrier of the GSDPT reaction. To get more information, an N-D deuteration effect is examined. In the present experiment, five deuterated dimers are identified by visible−visible or IR−visible population labeling spectroscopy. The IR band pattern of the NH-ND dimer is very different from that of the NH-NH dimer. Among several N-D deuteration effects, a change in a condition between the inter- or intramolecular vibrational energy flows due to the single N-D deuteration is considered to be important. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp909337w |