Carbon Nitride as a Nonprecious Catalyst for Electrochemical Oxygen Reduction

Nitrogen-doped carbon-based catalysts are increasingly being studied as Pt-free electrodes for oxygen reduction in polymer electrolyte membrane fuel cells. Here, we study the oxygen reduction activity of stoichiometric carbon nitride, which has much higher nitrogen content and is synthesized at lowe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2009-11, Vol.113 (47), p.20148-20151
Hauptverfasser: Lyth, Stephen M, Nabae, Yuta, Moriya, Shogo, Kuroki, Shigeki, Kakimoto, Masa-aki, Ozaki, Jun-ichi, Miyata, Seizo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrogen-doped carbon-based catalysts are increasingly being studied as Pt-free electrodes for oxygen reduction in polymer electrolyte membrane fuel cells. Here, we study the oxygen reduction activity of stoichiometric carbon nitride, which has much higher nitrogen content and is synthesized at lower temperatures, without using ionic or metallic iron. Carbon nitride was studied and characterized via X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, BET specific surface area analysis, and thermogravimetric analysis. Rotating electrode voltammetry in oxygen-saturated sulfuric acid was used to determine the catalytic activity. The onset potential for oxygen reduction by carbon nitride electrodes was 0.69 V (vs NHE) compared to 0.45 V for a carbon black reference electrode. However, the current density was low, possibly due to the low surface area of the material. Blending the carbon nitride with a high surface area carbon black support resulted in a significant improvement in current density and in an increase in onset potential to 0.76 V. The role of surface area was elucidated via cyclic voltammetry. This work confirms that stoichiometric carbon nitride has improved inherent oxygen reduction activity compared to pure carbon, and suggests that Fe coordination sites are not essential for electrochemical oxygen reduction in nitrogen-containing carbon materials.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp907928j